1. (From “Introduction to Algorithms”) A sequence of n operations is performed on a data structure. The ith operation costs i if i is an exact power of 2, and 1 otherwise. Determine the amortized cost per operation in two ways: (i) using the accounting method; (ii) using the potential method.

2. (From “Introduction to Algorithms”) Design a data structure to support the following two operations for a set S of integers:
 - Insert(S, x) inserts x into S.
 - Delete-Larger-Half(S) deletes the largest $\lceil S/2 \rceil$ elements from S.

 Explain how to implement this data structure so that any sequence of m operations runs in $O(m)$ time.

3. (From “Computational Geometry” by de Berg, van Kreveld, Overmars, and Schwarzkopf) Let A be a set of numbers. Analyze the expected running time of the following procedure RandMax(A). The set A in the first call to RandMax contains n distinct numbers.

 RandMax(A)
 (a) If $|A| = 1$, return the number in A.
 (b) Otherwise, choose a random number $x \in A$.
 i. $y := \text{RandMax}(A \setminus \{x\})$.
 ii. If $y \geq x$, return y.
 iii. Otherwise, compare x with all other elements in A to confirm that x is larger than them. Return x.
