
For c satisfying 0 ≤ c ≤ 1 it follows that

∫ 1

1−c
xn dx =

∫ 1

0
xn dx −

∫ 1−c

0
xn dx

= An[1 − (1 − c)n+1]
= An[(n + 1)c − n(n + 1)

2
c2 + · · · + (−1)ncn+1]. (1)

But by reflecting in the line x = 1/2, we also obtain

∫ 1

1−c
xn dx =

∫ c

0
(1 − x)n dx

=
∫ c

0
1 − nx + n(n − 1)

2
x2 − · · · + (−1)n xn dx

= cA0 − nc2 A1 + n(n − 1)

2
c3 A2 − · · · + (−1)ncn+1 An. (2)

Since the two polynomials (1) and (2) in c agree for all c in [0, 1], they must be
identical. Comparing their linear terms gives the required result An = 1/(n + 1).

ACKNOWLEDGEMENTS. I would like to thank David Tacon for sparking my interest in Cavalieri’s argu-
ments, and both Ilan Vardi and the referee for helpful historical remarks.
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On Euler’s Constant—Calculating Sums
by Integrals

Li Yingying

1. INTRODUCTION. Euler’s constant γ is defined by

γ = lim
n→∞ Dn,
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where

Dn =
n∑

k=1

1

k
− log(n + 1)

for n in N. Write

rn = γ − Dn.

R. M. Young [1] gave the following estimate for rn:

1

2(n + 1)
< rn <

1

2n
. (1)

D. W. DeTemple [2] considered

D̃n =
n∑

k=1

1

k
− log

(
n + 1

2

)

in place of Dn and showed that

7

960
· 1

(n + 1)4
< γ − D̃n + 1

24
(
n + 1

2

)2 <
7

960n4
.

An earlier discussion of Dn can be found in Rippon [3]. Furthermore, DeTemple and
Wang [4] established an estimate for rn in which Bernoulli numbers are involved.

In this note we use an elementary method to give an exact representation of rn , from
which asymptotic estimates for rn are then derived. Our method is to calculate sums
by means of integrals.

2. THE METHOD. Rewrite Dn as

Dn =
n∑

k=1

(
1

k
−

∫ k+1

k

1

x
dx

)
=

n∑
k=1

∫ 1

0

t

k(k + t)
dt. (2)

From (2) we obtain

rn =
∞∑

k=n+1

∫ 1

0

t

k(k + t)
dt

=
∞∑

k=n+1

∫ 1

0
t

(
1

k(k + t)
− 1

k(k + 1)

)
dt +

∫ 1

0
t dt

∞∑
k=n+1

1

k(k + 1)

=
∞∑

k=n+1

∫ 1

0

t (1 − t)

k(k + 1)(k + t)
dt + 1

n + 1

∫ 1

0
t dt.

Write

r1(n) =
∞∑

k=n+1

∫ 1

0

t (1 − t)

k(k + 1)(k + t)
dt, a1 =

∫ 1

0
t dt. (3)
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Then

rn = r1(n) + a1

n + 1
. (4)

Moreover,

r1(n) =
∞∑

k=n+1

∫ 1

0

t (1 − t)

k(k + 1)(k + t)
dt

=
∞∑

k=n+1

∫ 1

0
t (1 − t)

(
1

k(k + 1)(k + t)
− 1

k(k + 1)(k + 2)

)
dt

+
∞∑

k=n+1

∫ 1

0

t (1 − t)

k(k + 1)(k + 2)
dt

=
∞∑

k=n+1

∫ 1

0

t (1 − t)(2 − t)

k(k + 1)(k + 2)(k + t)
dt

+
∞∑

k=n+1

1

2

∫ 1

0
t (1 − t) dt

(
1

k(k + 1)
− 1

(k + 1)(k + 2)

)

=
∞∑

k=n+1

∫ 1

0

t (1 − t)(2 − t)

k(k + 1)(k + 2)(k + t)
dt + 1

2

∫ 1

0
t (1 − t) dt

1

(n + 1)(n + 2)
.

Let

r2(n) =
∞∑

k=n+1

∫ 1

0

t (1 − t)(2 − t)

k(k + 1)(k + 2)(k + t)
dt, a2 = 1

2

∫ 1

0
t (1 − t) dt. (5)

Then

rn = r2(n) + a1

n + 1
+ a2

(n + 1)(n + 2)
.

For m in N with m ≥ 2 we have

rm(n) =
∞∑

k=n+1

∫ 1

0

t (1 − t)(2 − t) · · · (m − t)

k(k + 1)(k + 2) · · · (k + m)(k + t)
dt,

am = 1

m

∫ 1

0
t (1 − t) · · · (m − 1 − t) dt. (6)

By induction we get

rn =
m∑

k=1

ak

(n + 1)(n + 2) · · · (n + k)
+ rm(n).

From (3) and (5) we learn that

2a2

∞∑
k=n+1

1

k(k + 1)2
< r1(n) < 2a2

∞∑
k=n+1

1

k2(k + 1)
,
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from which we derive (using the fact that a2 = 1/12) the estimate

1

12(n + 1)(n + 2)
< r1(n) <

1

12n(n + 1)
. (7)

Hence we arrive via (4) and (7) at

1

2(n + 1)
+ 1

12(n + 1)(n + 2)
< rn <

1

2(n + 1)
+ 1

12n(n + 1)
,

which is stronger than (1).
From (6) we obtain (for m ≥ 2):

rm(n) < am+1

∞∑
k=n+1

(
1

(k − 1)k · · · (k + m − 1)
− 1

k(k + 1) · · · (k + m)

)

= am+1(n − 1)!
(n + m)!

and

rm(n) >

∞∑
k=n+1

(m + 1)am+1(k − 1)!
(k + 1)(k + m)! >

n(m + 1)am+1

n + 2

∞∑
k=n+1

(k − 2)!
(k + m)! .

Since

∞∑
k=n+1

(k − 2)!
(k + m)! =

∞∑
k=n+1

1

(k − 1)k · · · (k + m)

=
∞∑

k=n+1

1

(m + 1)

×
(

1

(k − 1)k · · · (k + m − 1)
− 1

k(k + 1) · · · (k + m)

)

= (n − 1)!
(m + 1)(n + m)! ,

we have

rm(n) >
am+1n!

(n + 2)(n + m)! .

On the other hand, it is obvious from (6) that for m ≥ 2

1

6m
(m − 2)! ≤ am ≤ 1

6m
(m − 1)!.

We conclude that

1

6(n + 2)m(m + 1)
(m+n

m

) < rm(n) <
1

6n(m + 1)
(m+n

m

) (8)
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for m ≥ 2, where

(
m + n

m

)
= m! n!

(m + n)! .

Taking into account (7) , we see that (8) is also valid for m = 1. From (8) we infer

lim
m→∞ rm(n) = 0.

We have thus established the following theorem:

Theorem. Let Dn = ∑n
k=1 k−1 − log(n + 1) and let γ = limn→∞ Dn be Euler’s con-

stant. Then

rn = γ − Dn =
∞∑

k=1

ak

(n + 1) · · · (n + k)
,

where

a1 = 1

2
, ak = 1

k

∫ 1

0
t (1 − t) · · · (k − 1 − t) dt (k > 1).

Furthermore,

1

6(n + 2)m(m + 1)
(m+n

m

) < rn −
m∑

k=1

ak

(n + 1) · · · (n + k)
<

1

6n(m + 1)
(m+n

m

) .

The referee kindly produced the following table for the numbers a1, a2, . . . , a8:

a1 = 1

2
, a2 = 1

12
, a3 = 1

12
,

a4 = 19

120
, a5 = 9

20
, a6 = 863

504
,

a7 = 1375

168
, a8 = 33953

720
.

He also pointed out that ak can be expressed in terms of Stirling numbers of the first
kind s(k, j) as

ak = (−1)k+1

k

k∑
j=1

s(k, j)

j + 1
.

Our proof is a completely elementary calculation applying integrals to estimate certain
sums. The method can be applied to other cases as well.

ACKNOWLEDGEMENTS. The author is grateful to Professor Wang who encouraged her to write this pa-
per; also, she thanks the referee for valuable suggestions and for correcting typographical mistakes. The project
was supported by a grant from the Education Ministry of China.
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Life on the Edge

Alf van der Poorten

1. INTRODUCTION. One knows that log(1 − z) = − ∑∞
n=1 zn/n for |z| ≤ 1 and

z �= 1. Because 1 − eiθ = −2i sin(θ/2) · eiθ/2 and −i = e−π i/2, we see that

log(1 − eiθ ) = log(−i) + log

(
2 sin

θ

2

)
+ log eiθ/2 = log

(
2 sin

θ

2

)
− i

(π

2
− θ

)
,

and on taking real and imaginary parts of − log(1 − z) with z = eiθ = cos θ + i sin θ ,
it follows that

∞∑
n=1

cos nθ

n
= − log

(
2 sin

θ

2

)

and

∞∑
n=1

sin nθ

n
= π

2
− θ

2
(1)

for 0 < θ < 2π .
The relevant rule of thumb is that power series can safely be treated as if they

were polynomials of [very] high degree provided one stays well away from the bound-
ary of the disc of convergence. So, guessing that log(1 − eiθ ) has imaginary part∑

n≥1(sin nθ)/n = (π − θ)/2 for 0 < θ < 2π is scary stuff requiring the presence
of a qualified mathematician.∗ Do not try it at home.

In fact, oops! What if θ creeps down to zero? Surely, all the terms of the series
become zero? But its purported sum becomes π/2!

2. EVALUATION OF AN INTEGRAL. Not to worry. Look carefully at the graph
of (sin x)/x . It’s the sine curve wriggling pathetically as it is squeezed between the
hyperbolae xy = 1 and xy = −1.

∗MGR: Mathematical Guidance Recommended. Possible use of strong technical language and presence of
naked singularities.
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