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ABSTRACT
Financial prices are often discretized—with smallest tick size of one
cent, for example. Thus prices involve rounding errors. Rounding
errors affect the estimation of volatility, and understanding them is
critical, particularly when using high frequency data. We study the
asymptotic behavior of realized volatility (RV), which is commonly used
as an estimator of integrated volatility. We prove the convergence
of the RV and scaled RV under varous conditions on the rounding
level and the number of observations. A bias-corrected volatility
estimator is proposed and an associated central limit theorem
is shown. The simulation and empirical results demonstrate that
the proposed method can yield substantial statistical improvement.
( JEL: C02, C13,C14)
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High frequency data analysis has received substantial attention in recent years
and volatility estimation is a central topic of interest. The primary difficulty
in estimating daily volatilities by using high frequency data is the presence of
market microstructure noise; notable developments have been made in this area.
Zhang et al. (2005); Zhang (2006); Barndorff-Nielsen et al. (2008); and Xiu (2010)
proposed and evaluated various volatility estimators that exhibited favorable
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convergence properties, assuming that the microstructure noise was additive,
and independent and identically distributed (i.i.d.). Li and Mykland (2007) and
Jacod et al. (2009) studied cases in which the market microstructure noise was a
combination of additive noise and rounding error. Rosenbaum (2009) proposed a
novel volatility estimation approach, using absolute values of the increments when
rounding is the only source of the market microstructure noise.

Rounding is a crucial source of market microstructure noise that should not
be ignored. Because stocks are traded using discrete price grids, their observations
are effectively rounded. In certain cases, particularly when the stock prices are low,
rounding can be the main source of market microstructure noise. Figure 1 shows
the second-by-second stock prices of Citigroup Inc on May 1, 2007, indicating that
the log prices of the stock did not exhibit the pattern of a diffusion process or a
diffusion process with additive noise. Rather, these prices seem like samples from
a rounded diffusion.

In this article, we focus on the extreme case where there is pure rounding. We
explore the commonly used volatility estimator, the realized volatility (RV) and how
it can be bias-corrected to yield consistent volatility estimates. RV goes back to the
path breaking work of Andersen and Bollerslev (1997), Andersen et al. (2001, 2003),
Barndorff-Nielsen and Shephard (2002), Jacod and Protter (1998), among others.

We consider a security price process S, whose logarithm X = logS follows

dXt =μtdt+σtdWt. (1)

In other words, S is the solution to the following stochastic differential equation:

dSt = (μt + 1
2
σ 2

t )Stdt+σtStdWt, t∈[0,1] (2)

where Wt is a standard Brownian motion. We assume thatμt and σt are continuous
random processes satisfying the regularity conditions specified in Section 1.

It is a common practice in finance to use the sum of frequently sampled
squared returns, the RV, to estimate the integrated volatility

∫ 1
0 σ

2
t dt. However,

empirical studies have shown that because of market microstructure noise, RV can
be severely biased when prices are sampled at high frequencies, whereas sampling
sparsely yields more reasonable estimates (see, for example, the signature plots
introduced by Andersen et al. (2000)). In this study, we investigate the case in which
the contamination caused by market microstructure results solely from rounding
errors.

Let αn be a sequence of positive numbers representing the accuracy of
measurement when the price process is observed n times during a time period [0,1].
Suppose that at time i/n (i=0,···n), the value kαn is observed when the true value
Si/n is in [kαn,(k+1)αn) with k ∈Z. For every real s, we denote by s(αn) =αn�s/αn� its
rounded-off value at level αn. Taking the Citigroup data as in Figure 1 for example,
the rounding level is αn =0.01. On the day shown, the k ranged from 296 to 317.
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Figure 1 Second-by-second stock prices of Citigroup Inc on May 1, 2007. Rounding appears to be
a main feature of the data.

We investigate the asymptotic behavior of the RV, as follows:

Vn =
n∑

i=1

(Y i
n
−Y i−1

n
)2, (3)

where Y i
n
= log(S(αn)

i/n ), i=0,··· ,n represents the observed log prices. Our main
results are presented for the case in which the rounding is down as previously
described. This is primarily to facilitate presenting the proofs, where results of
Delattre and Jacod (1997) for round-off errors are applied. Same or similar results
also apply to rounding up or rounding to the nearest multiple of αn (see Remark 5 and
Section 2.3.2 for additional details).

Jacod (1996) and Delattre and Jacod (1997) previously studied volatility
interference based on a rounded Itô diffusion; although their work inspired the
current study, we seek in this article to spell out what ensues when rounding occurs
on the original (e.g., the US dollar, euro, etc.) scale rather than the log scale. As we
shall see later in this article, our findings indicate that this more realistic rounding
yields a bias which requires a somewhat more complicated correction. For example,
in the simple case that the volatility is constant, the bias is no longer a function of
the volatility (see Remark 1).

We shall provide the limit of Vn, demonstrating that the RV can be problematic
when rounding errors are present, and elucidating why “sparse sampling” could
be a practical way to estimate volatility (however, sparsely sampling does not
solve all the problems). We subsequently propose a bias-corrected estimator, and
prove an associated central limit theorem. The simulation results demonstrate
that the proposed bias-corrected estimator yields substantially enhanced statistical
accuracy. Empirical studies show that the bias-correction can facilitate financial risk
management. Our main bias correction applies to the case of “small rounding” as
in Delattre and Jacod (1997) and Rosenbaum (2009). Such asymptotics are realistic
in practice, cf. the findings for additive error in Zhang et al. (2011). Small rounding
asymptotics has also been studied in Kolassa and McCullagh (1990), where it is
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shown to be related to additive error. We also discuss the effects on RV when the
rounding is not “small”.

The theoretical results are presented in Section 1; the simulation studies are
presented in Section 2, and the empirical studies in Section 3; Section 4 concludes.
The proofs are shown in the Appendix.

1 ASYMPTOTIC RESULTS

We assume that the latent security price process St follows (2), where σt is a
nonrandom function of St, of class C5 on [0,∞) (In the Black–Scholes model,
σt ≡σ is a constant). Assume further that μt is a continuous random process (in
particular, it is locally bounded).

Let βn =αn
√

n.

Theorem 1: When αn →0 as n→∞ such that βn →β∈[0,∞), we have

Vn →P

∫ 1

0
σ 2

t dt+ β2

6

∫ 1

0

1
S2

t
dt− β2

π2

∫ 1

0

1
S2

t

∞∑
k=1

1
k2 exp

(
−2π2k2 σ

2
t S2

t
β2

)
dt.

One sees from this result that the bias is always positive when β 	=0, rapidly
increasing as β grows. Also, the bias is smaller when the stock price St, t∈[0,1]
is larger. Figure 2 gives a visual representation of this. This result captures the
empirical features that
a) subsampling helps (the same α value and a smaller n value yields a smaller β
and correspondingly smaller bias); and
b) the rounding effect is less severe for more expensive stocks (i.e., higher St values
correspond to smaller biases).

Theorem 1 shows that when βn →0, one has the consistency of Vn. If βn decays
polynomially in n, we have the following central limit theorem.

Theorem 2: When βn =O(n−γ ) for some γ >0, we have

√
n

(
Vn −

∫ 1

0
σ 2

t dt− β2
n

6

∫ 1

0

1
S2

t
dt

)
→L−stably

∫ 1

0

√
2σ 2

t dBt,

where B is a standard Brownian motion independent of W.

In this case, a finite sample bias of β
2
n

6
∫ 1

0
1

S2
t
dt remains. The bias can be estimated

and a bias-corrected estimator can be determined as follows.
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Figure 2 RV Vn versus β based on Theorem 1 and three simulated sample paths (μt ≡0, σt ≡0.01)
with starting prices S0 =1, S0 =10 and S0 =20. The dashed line represents the true integrated
volatility, which is 0.0001; the solid curves represent the limits of the RV. The curve shapes indicate
that the bias is increasing in β, and comparing the ranges of the y axes of the plots demonstrates
that the bias is smaller when St, t∈[0,1] is larger.

Theorem 3: Assume that βn =O(n−γ ) for some γ >0, and let

Vn
0 :=Vn − α2

n
6

n∑
i=1

1

(S(αn)
i/n )2

.

Then as n→∞,

√
n

(
Vn

0 −
∫ 1

0
σ 2

t dt

)
→L−stably

∫ 1

0

√
2σ 2

t dBt,

where B is a standard Brownian motion independent of W.

The simulation results in the subsequent section demonstrate that this bias-
correction yields substantially improved estimates. The empirical studies further
show that the bias correction can be quite helpful in risk analysis.
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Remark 1: In the case where σt ≡σ , it is documented in section 4 of Delattre and Jacod
(1997) that when rounding is implemented on the log scale, the bias is a function of σ 2 =∫ 1

0 σ
2
t dt. We see from the above results that in the presence of this more realistic type of

rounding, the bias is no longer a function of the targeted integrated volatility even when
σt ≡σ . Therefore this requires somewhat more complicated bias correction.1

Remark 2: The condition of small rounding is necessary for the asymptotic results above.
In practice, we apply these asymptotic results via expansion—we observe only oneαn and one
n for a particular price process in a specified time period. When small rounding is relevant,
we can make a correction as in Theorem 3, yielding a superior estimator. In practice, we
usually cannot change αn. If the βn is too big due to high sampling frequency, we can
analyze a subsample with a moderate frequency to establish a situation with small βn. (Ref.
simulation studies for additional detail.)

Remark 3: The condition that the random process σt is a nonrandom function of St is
assumed so that the framework of Delattre and Jacod (1997) can be applied. In Sections
2 and 3, we see in simulation and empirical studies that even when this condition is not
necessarily satisfied, the proposed bias correction can still be very helpful. We conjecture
that similar results hold also in stochastic volatility settings.2

When the small rounding condition is not satisfied, the RV would blow up as
the sampling frequency becomes larger. Theorem 4 illustrates the asymptotic result
of a simple case where σt ≡σ . In this case, simple bias correction is insufficient. A
correction after subsampling may help.

Theorem 4: Let the accuracy of measurement αn ≡α be independent of the number of
observations n. Consider the case when σt ≡σ for t∈[0,1]. Redefine S(α)

i/n =α if S(α)
i/n =0. As

n→∞,

1√
n

Vn →P
1
σ

√
2
π

∞∑
k=1

Llog((k+1)α)
1

(
log

k+1
k

)2
,

where La
t is the local time at the level a of the continuous semimartingale Xt = logSt (see

Revuz and Yor (1999), page 222).

Remark 4: Redefining S(α)
i/n =α if S(α)

i/n =0 rules out the possibility of yielding a logarithm
of zero for log prices. In practice, this simply means that the security price does not go below
the smallest rounding grid (1 cent if α=0.01) during the specified time period.

1 We emphasize that our derivation builds on the general results of Delattre and Jacod (1997).
2A formal extension to this more general case can use a simple parametric approximation to the process,
perhaps via the contiguity arguments in Mykland and Zhang (2011).
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Remark 5: When rounding is not down, but rather to the nearest multiple of αn, the
results of Theorems 1–3 remain the same, but a small adjustment must be made to the limit
of Theorem 4: the local times will be at levels log((k+ 1

2 )α) instead of log((k+1)α).

2 SIMULATION STUDIES

2.1 Moderate Sampling Frequencies

Consider first the simplest case that σt ≡σ for t∈[0,1]. Denote by Vn_CI and Vn
0 _CI

the nominal 95% confidence interval (CI) based on Vn and Vn
0 , respectively.

The naïve CI based on Vn relies on the classical theory for RV, which indicates
the following when there is no observation error:

√
n[Vn −σ 2]→L N(0,2σ 4).

The resulting nominal 95% CI is as follows:

Vn_CI =
[

Vn −1.96∗
√

2(Vn)2/n,Vn +1.96∗
√

2(Vn)2/n
]
.

Our findings in the previous section indicate that the RV is no longer reliable
when rounding errors are present. We proposed the following simple bias-corrected
estimator that should function when αn

√
n is reasonably small:

Vn
0 =Vn − α2

n
6

n∑
i=1

1

(S(αn)
i/n )2

.

By Theorem 3,

√
n[Vn

0 −σ 2]→L N(0,2σ 4).

The adjusted nominal 95% CI is as follows:

Vn
0 _CI =

[
Vn

0 −1.96∗
√

2(Vn
0 )2/n,Vn

0 +1.96∗
√

2(Vn
0 )2/n

]
.

To examine the performance of the volatility estimators Vn and Vn
0 , we perform

the following simulation study.
We simulate sample paths from (2) with μ=0, σ =0.01. We examine two price

levels, with starting prices of S0 =$10 and S0 =$50, respectively. At each price level,
10,000 simulations were conducted for a one-day period. We use a fixed rounding
level of αn ≡α=0.01, to mimic the financial market, in which stock prices are often
rounded to the cent.
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Table 1 Performance of the nominal 95% CIs based on Vn and Vn
0 for stocks priced at

approximately $10 (S0 =$10)

samp.
freq.

samp.
intv.

‘βn’ Vn_CI Vn
0 _CI

78 5 min 0.088
f:
l:
b:

94.29%
7.02∗10−5

1.18∗10−5

89.57%
6.20∗10−5

−1.21∗10−6

130 3 min 0.114
f:
l:
b:

78.59%
5.87∗10−5

2.06∗10−5

87.78%
4.81∗10−5

−1.02∗10−6

195 2 min 0.140
f:
l:
b:

31.29%
5.23∗10−5

3.18∗10−5

85.08%
3.94∗10−5

−6.57∗10−7

390 1 min 0.197
f:
l:
b:

0
4.61∗10−5

6.4∗10−5

74.75%
2.79∗10−5

−6.71∗10−7

780 30 sec 0.279
f:
l:
b:

0
4.44∗10−5

1.23∗10−4

46.91%
1.85∗10−5

−6.54∗10−6

“f”: actual coverage frequency of the CIs; “l”: average CI length; “b”: finite sample bias.

Tables 1 and 2 show the simulation results. The first columns show the sample
frequencies (samp. freq.), the second columns show the corresponding sample
intervals (samp. intv.), and the third columns show the pre-limiting βn =α√

n,
demonstrating how the proposed small rounding asymptotic theory functions at
a finite sample size and fixed rounding level. The final two columns display three
items each. The notation “f ” denotes the “actual coverage frequency,” which is used
to record the frequency at which the true parameter is covered by the CIs based on
the corresponding volatility estimators Vn and Vn

0 ; “l” denotes the “average length
of the CI,” which indicates the CI width; and “b” denotes the “finite sample bias,”
which indicates how much and in which direction the estimators are biased.

Comparing Vn with Vn
0 indicates that when the sample frequency is relatively

low (e.g., a 5-min sampling interval for stocks priced at approximately $10, or
1–5 min for stocks priced at approximately $50), both Vn and Vn

0 perform well
because their actual coverage frequency is near the nominal rate of 95%. This is
consistent with the empirical evidence that subsampling is beneficial. But since the
convergence rate is the square root of n, the CIs are wide when n is small. When
the sample frequency increases slightly (e.g., 3 min - 1 min for stocks priced at
approximately $10 or 30 sec - 20 sec for stocks priced at approximately $50), the
problems with the RV become apparent, the coverage frequency decreases from
approximately 95% to some much lower rates (or even zero in the former case),
whereas the Vn

0 _CI continues to exhibit a large coverage frequency. The biases
demonstrate that the RV goes to some values much larger than the true value,
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Table 2 Performance of the nominal 95% CIs based on Vn and Vn
0 for stocks priced at

approximately $50 (S0 =$50)

samp.
freq.

samp.
intv.

‘β’
α
√

n
Vn_CI Vn

0 _CI

78 5 min 0.088
f:
l:
b:

92.89%
6.23∗10−5

−7.51∗10−7

92.48%
6.19∗10−5

−1.27∗10−6

130 3 min 0.114
f:
l:
b:

94.01%
4.86∗10−5

9.39∗10−8

93.49%
4.82∗10−5

−7.73∗10−7

195 2 min 0.140
f:
l:
b:

94.83%
3.99∗10−5

6.26∗10−7

93.86%
3.94∗10−5

−6.74∗10−7

390 1 min 0.197
f:
l:
b:

94.9%
2.87∗10−5

2.31∗10−6

93.81%
2.80∗10−5

−2.95∗10−7

780 30 sec 0.279
f:
l:
b:

86.01%
2.08∗10−5

5.08∗10−6

93.45%
1.98∗10−5

−1.23∗10−7

1170 20 sec 0.342
f:
l:
b:

60.83%
1.74∗10−5

7.66∗10−6

93.12%
1.62∗10−5

−1.37∗10−7

2340 10 sec 0.484
f:
l:
b:

0.27%
1.32∗10−5

1.55∗10−5

31.45%
1.23∗10−5

7.72∗10−6

“f”: actual coverage frequency of the CIs; “l”: average CI length; “b”: finite sample bias.

whereas the Vn
0 remains close to the true parameter value. Hence, Vn

0 substantially
outperforms the uncorrected RV Vn.

At extremely high frequencies (less than 30 sec for $10 stocks or less than
10 sec for $50 stocks), the bias-corrected volatility estimator Vn

0 demonstrates
decreased performance levels, although its bias remains substantially smaller
compared with the RV). This is expected, because the bias-corrected estimator
is built on asymptotic theory, which requires the condition αn

√
n→0, which is

hypothetical, since in practice one is faced with a fixed data set and a fixed tick
size. If the sample frequency were to continue to increase at a fixed rounding level,
the proposed bias correction would eventually fail. The failure at extremely high
frequency is expected among other RV-based volatility estimators as well and is a
direct consequence of Theorem 4 (Theorem 2 in Li and Mykland (2007) provides
the result for the two scales realized volatility of Zhang et al. (2005)). The above
simulation shows that for a given price level and rounding level, the proposed
bias correction method is effective when the sample frequency is not excessively
high.
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Figure 3 Vn (RV) and Vn
0 (V0) at various sampling frequencies when the rounding level is fixed at

0.01 for a sample path. The dotted horizontal line is the true integrated volatility (V). The sampling
frequencies vary from 1 observation per second (left) to 1 observation per 300 seconds (right). The
price level is approximately $10 in this simulation.
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Figure 4 Vn (RV) and Vn
0 (V0) versus the square root of the sampling frequencies when the

rounding level is fixed at 0.01 for a sample path. The dotted horizontal line is the true integrated
volatility (V). The sampling frequencies vary from 1 observation per second (right) to 1 observation
per 300 seconds (left). The price level is approximately $10 in this simulation.

2.2 Large Sampling Frequencies at a Fixed Rounding Level

At a fixed rounding level, when n is excessively large, the conditions of Theorems 1–
3 are no longer met and the feature described in Theorem 4 appears (Figures 3
and 4).

Figures 3 and 4 demonstrate that as the sampling frequency increases (sampling
interval decreases), both the RV and the proposed bias corrected estimator Vn

0 will
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Table 3 Performance of Vn and Vn
0 when volatility is not a function of price

1st Quartile Median 3rd Quartile Mean Root Mean Squares

Vn −V 1.28∗10−4 2.05∗10−4 3.15∗10−4 2.47∗10−4 3.02∗10−4

Vn
0 −V −4.36∗10−5 −1.02∗10−6 1.74∗10−5 −1.85∗10−5 6.98∗10−5

The estimation errors are summarized by their 1st quartile, median, 3rd quartile, mean, and root mean
squares.

rapidly increase as described in Theorem 4. Figure 4 most clearly exhibits the rate
of divergence. However, the Vn

0 demonstrates a clear advantage over the RV at a
large range of moderate-sized sampling intervals (20s - 2 min in the case illustrated
in Figure 4).

2.3 When Conditions Deviate From the Requirements

2.3.1 When volatility is not a function of price. The theoretical results are
established under conditions specified in Section 1; it is worth investigating how
the bias correction performs if the required conditions are not met. Therefore, we
conduct simulations based on a stochastic model in which the volatility process
evolves by itself and is not a function of the price process. The Heston model (Heston
1993) was adopted to determine the log price:

dXt = (μ−νt/2)dt+σtdBt

dνt =κ(η−νt)dt+γ ν1/2
t dWt

where νt =σ 2
t , B and W are standard Brownian motions with E(dBtdWt)=ρdt, and

the parametersμ, η, κ , γ , ρ, and the starting log-price X0 are set at 0.05/252, 0.1/252,
5/252, 0.5/252, −0.5, and log(9), respectively. Aït-Sahalia and Kimmel (2007) and
Aït-Sahalia et al. (2013) were referenced when selecting these parameter values.
We used a moderate leverage effect parameter ρ=−0.5 to represent an individual
stock. We simulate 10,000 days and obtained pairs of the latent observations Xti ,σti

for t0 =0,t1 = 1
390 ,··· ,tn =1 for each day (one observation per minute, n=390). We

compute the integrated volatility V =n−1∑n
i=1σ

2
ti

and use this value as the reference
measure. The observed log prices are log(exp(Xti )

(α)) where α=0.01 (rounded to
cent). We compute the RV Vn and the proposed bias-corrected estimator Vn

0 ; and
summarize their performance in Table 3.

The results indicate that although this model fails to meet the conditions for
the theoretical results, the estimator Vn

0 demonstrates a clear advantage.

2.3.2 When rounding to the nearest multiple of α. As mentioned in
Remark 5, rounding down and rounding to the nearest multiple of α should yield
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Table 4 Performance of Vn and Vn
0 when rounding to the nearest multiple of α

1st Quartile Median 3rd Quartile Mean Root Mean Squares

Vn −V 1.28∗10−4 2.01∗10−4 3.13∗10−4 2.45∗10−4 3.00∗10−4

Vn
0 −V −4.54∗10−5 −1.14∗10−6 1.79∗10−5 −1.89∗10−5 7.09∗10−5

The estimation errors are summarized by their 1st quartile, median, 3rd quartile, mean, and root mean
squares.

similar results. Table 4 presents the results, when comparing the performance of Vn
0

and Vn based on the same simulated sample paths as the one studied in Table 3. The

only difference is that the observations become Yi/n = log[ exp(Xti/n )
α

]·α with α=0.01
(i=1,··· ,n), where [·] denotes rounding to the nearest integer. The results shown
in Table 4 are similar to those in Table 3, as expected.

2.3.3 When jumps exist. We further investigate volatility estimation in the
presence of jumps. We simulated the following model:

dXt = (μ−νt/2)dt+ν1/2
t dBt +JtdNt (4)

dνt =κ(η−νt)dt+γ ν1/2
t dWt, (5)

where Bt and Wt are Brownian motions with correlation ρ, Nt is a Poisson process
with intensity λ, and Jt denotes the jump size, which is assumed to follow an
independent N(0,σ 2

J ). The prices are again rounded to cents: Yi/n = log(exp(Xi/n)(α))
(i=1,··· ,n).

One way to remove the impact of jumps in volatility estimation is using the
truncated RV which is defined as follows (Aït-Sahalia and Jacod, 2012).3

Vn,tr =
n∑

i=1

(Yi/n −Y(i−1)/n)21{|Yi/n−Y(i−1)/n|≤an−� } (6)

for some � ∈ (0,1/2) and a>0.
We define

Vn,tr
0 =Vn,tr − α2

n
6

n∑
i=1

1
(exp(Yi/n))2

as the bias-corrected version of the truncated RV. The parameters
η=0.1, γ =0.5/252, κ=5/252, ρ=−0.5, μ=0.05/252, λ=5, σJ =0.015, and

3See also Mancini (2001), Lee and Mykland (2008), and Jing et al. (2012). Bi- and multipower methods
(Barndorff-Nielsen and Shephard, 2004, 2006) may also work, but we have not investigated this.

 at H
ong K

ong U
niversity of Science and T

echnology on February 28, 2014
http://jfec.oxfordjournals.org/

D
ow

nloaded from
 

http://jfec.oxfordjournals.org/
http://jfec.oxfordjournals.org/


[16:54 18/2/2014 nbu005.tex] JFINEC: Journal of Financial Econometrics Page: 13 1–27

LI & MYKLAND | Rounding Errors and Volatility Estimation 13

Table 5 Performance of Vn,tr and Vn,tr
0 when jumps exist

1st Quartile Median 3rd Quartile Mean Root mean squares

Vn,tr −V 1.47∗10−4 2.24∗10−4 3.34∗10−4 2.59∗10−4 3.35∗10−4

Vn,tr
0 −V −8.46∗10−5 −2.96∗10−5 6.03∗10−5 −7.12∗10−5 2.29∗10−4

The estimation errors are summarized by their 1st quartile, median, 3rd quartile, mean and root mean
squares.

X0 = log(9) were used, and the truncation level was set at an−� =4
√
αn−1/2 (ref.

Aït-Sahalia and Jacod (2012), Aït-Sahalia et al. (2013)). The results are summarized
in Table 5, which indicates that when jumps exist, the proposed bias correction
method plays a significant role in reducing the bias of the truncated RV.

Remark 6: We notice that there is some deterioration in small sample behavior relative
to the no jump-no truncation case. Naturally, the truncation leads to both higher bias and
higher variance in small samples. The issue may relate to whether jumps get over-detected
in small samples (Bajgrowicz et al., 2013), but also to the fact that one loses intervals that
have continuous evolution (whether or not they have jumps). This latter problem has been
discussed, with possible solutions, in Lee (2005) and Lee and Hannig (2010), and is beyond
the scope of this article.

3 EMPIRICAL STUDY

To further illustrate the effectiveness of the proposed bias correction method,
we conduct an empirical analysis of Citigroup Inc. (NYSE:C), CBS Corporation
(NYSE:CBS), Dell Inc. (NYSE:DELL), Host Hotels and Resorts Inc. (NYSE:HST),
and KeyCorp (NYSE:KEY) stock data from 2009. We collected the stock prices every
minute (390 observations per day), computing the Vn and Vn

0 values for each day.
Based on the estimated volatilities, and the assumption that the return on each
day is normally distributed, exhibiting approximately zero mean and variance as
estimated (as is commonly assumed in risk management4), we computed the 5%
value at risk (VaR) for each day, counting the total number of days that the VaR
was violated. Table 6 lists the VaR violations that occurred among the 252 days
considered.

Because we considered the 5% VaRs, the expected rate of violation was 5%. The
examined stocks based on the Vn

0 demonstrated rates closer to the expected rate
than did those based on Vn. The Vn tends to dramatically overestimate the daily
volatilities, causing over-cautious VaRs.

4See, for example, Christoffersen (2011). We used the estimated volatility of the same day for computing
VaR of that day as our main purpose here is to examine the accuracy of the volatility estimators instead
of to predict VaR.
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Table 6 5% VaR violation rate based on the minute-by-minute stock prices of C, CBS,
DELL, HST, and KEY stocks in 2009

C CBS DELL HST KEY

Vn 1.59% 2.78% 3.57% 3.57% 2.38%
Vn

0 2.78% 3.17% 4.76% 3.97% 3.97%

4 CONCLUSIONS AND DISCUSSION

We have explored the estimation of the integrated volatility when rounding is the
primary source of market microstructure noise. We established asymptotic results
for the RV based on “small rounding” conditions. We proposed a bias-corrected
estimator for which consistency and central limit theorems were established.
Results were also presented for the case when “small rounding” conditions were not
satisfied. The effectiveness and practicailty of the proposed bias correction method
was demonstrated in both simulation and empirical studies.

Note that while we work with observations on a time interval [0,1], results
for the more general case of time interval [0,T] are obtained by rescaling. The
case of unequal observation times can be studied based on the methods of
Jacod and Protter (1998) and Mykland and Zhang (2006).

APPENDIX

A.1 Preparation

We assume without loss of generality (see Section A.4 for further justification) that
μt =0, in which case

dlogSt =σtdWt; (A.1)

and that there exist nonrandom constants Lσ ,Uσ ∈ (0,∞), such that

Lσ ≤σt ≤Uσ for t∈[0,1].
More Notation:

Am :=
{
ω∈� :St(ω)t∈[0,1] ∈[ 1

m
,m]
}

;

Bn :=
{
ω∈� : max

1≤i≤n

√
n
∣∣∣∣ Si/n

S(i−1)/n
−1
∣∣∣∣≤2logn

}
;

Yi,n :=√
n
(

S(αn)
i/n −S(αn)

(i−1)/n

)
;

U(n,φ) := 1
n

n∑
i=1

φ
(

S(αn)
(i−1)/n,Yi,n

)
for φ :R2 →R; (A.2)
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h(·) : density of the standard normal law;
hs(·) : density of the normal law N(0,s2).

Lemma 1: P(Bn)→1 as n→∞.

Proof. By (A.1),

Si/n/S(i−1)/n =exp

(∫ i/n

(i−1)/n
σsdWs

)
.

Note that for any i=1,2,···n,

E

(
exp

(√
n
∫ i/n

(i−1)/n
σsdWs

))

≤E

(
exp

(√
n
∫ i/n

(i−1)/n
σsdWs − 1

2
n
∫ i/n

(i−1)/n
σ 2

s ds+ 1
2

U2
σ

))

=exp
(

1
2

U2
σ

)
.

Hence for any a>0

P

(∫ i/n

(i−1)/n
σsdWs>a

)

=P

(
exp

(√
n
∫ i/n

(i−1)/n
σsdWs

)
>exp

(√
na
))

≤
exp

(
1
2 U2

σ

)
exp

(√
na
) .

Therefore,

P
(

max
1≤i≤n

(√
n(

Si/n

S(i−1)/n
−1)

)
>2logn

)

=P
(

max
1≤i≤n

(
Si/n

S(i−1)/n

)
>

2logn√
n

+1
)

=P

(
max
1≤i≤n

(∫ i/n

(i−1)/n
σsdWs

)
> log

(
2logn√

n
+1
))

 at H
ong K

ong U
niversity of Science and T

echnology on February 28, 2014
http://jfec.oxfordjournals.org/

D
ow

nloaded from
 

http://jfec.oxfordjournals.org/
http://jfec.oxfordjournals.org/


[16:54 18/2/2014 nbu005.tex] JFINEC: Journal of Financial Econometrics Page: 16 1–27

16 Journal of Financial Econometrics

≤n
exp

(
1
2 U2

σ

)
exp

(√
n(log( 2logn√

n +1))
)

→0 as n→∞.

A parallel argument gives

P
(

max
1≤i≤n

(√
n
(

1− Si/n

S(i−1)/n

))
>2logn

)
→0 as n→∞,

hence the conclusion. �

Lemma 2: If
√

nαn →β∈[0,∞), then for any m, there exist N large and
cm ∈ (0, 1

m ] such that for all n≥N, i=0,1,2,··· ,n,

S(αn)
i/n ≥cm on Am.

Proof.
∀i=0,1,2,··· ,n, S(αn)

i/n ≥Si/n −αn;
and

Si/n ≥ 1
m

on Am, and αn →0 as n→∞,

hence the conclusion. �

Lemma 3: Suppose that βn =√
nαn →β∈[0,∞), then for any fixed m>0,

sup
ω∈Am

⋂
Bn

Yi,n√
nS(αn)

(i−1)/n

=O
(

logn√
n

)
.

Proof. On Am
⋂

Bn,

|Yi,n|=√
n|S(αn)

i/n −S(αn)
(i−1)/n|≤√

n(|Si/n −S(i−1)/n|+2αn)≤2mlogn+2βn.

By Lemma 2, one can find a cm ∈ (0, 1
m ] such that for large n, on Am

⋂
Bn,

|Yi,n|
√

nS(αn)
(i−1)/n

≤ 2mlogn+2βn√
ncm

.

Since βn →β<∞, the above inequality implies that for any fixed m,

supω∈Am
⋂

Bn

Yi,n√
nS(αn)

(i−1)/n

is O
(

logn√
n

)
. �
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Lemma 4: Let β>0, then for all σ,x>0,

∫ 1

0

∫
h(y)

(
β�u+yσx/β�

x

)2
dydu=σ 2 + 1

x2

(
β2

6
− β2

π2

∞∑
k=1

1
k2 exp

(
−2π2k2 σ

2x2

β2

))
.

Proof. ∫ 1

0

∫
h(y)

(
β�u+yσx/β�

x

)2
dydu

=E
(
β�U+Yσx/β�

x

)2
,U ∼unif [0,1],Y ∼N(0,1)

=β
2

x2 E(�U+Yσx/β�)2

=β
2

x2 E(�U+Z�)2,Z∼N

(
0,
σ 2x2

β2

)

=β
2

x2 E
(

E(�U+Z�2∣∣Z)
)

=β
2

x2 E
(

(Z−{Z})2(1−{Z})+(Z+1−{Z})2{Z}
)

=β
2

x2

(
EZ2 +E({Z}(1−{Z}))

)

=σ 2 + 1
x2

(
β2

6
− β2

π2

∞∑
k=1

1
k2 exp

(
−2π2k2 σ

2x2

β2

))
,

where {z}=z−�z� is the fractional part of z.

The last equality above is proved by using the Fourier expansion for function
f (z)={z}−{z}2. �

A.2 Proof of Theorem 1

Recall that Vn is defined in (3). For large n,

VnIAm∩Bn

=
n∑

i=1

(logS(αn)
i/n −logS(αn)

(i−1)/n)2IAm∩Bn

= 1
n

n∑
i=1

⎡
⎣√

nlog

⎛
⎝S(αn)

i/n −S(αn)
(i−1)/n

S(αn)
(i−1)/n

+1

⎞
⎠
⎤
⎦

2

IAm∩Bn (A.3)
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= 1
n

n∑
i=1

⎡
⎣√

nlog

⎛
⎝ Yi,n√

nS(αn)
(i−1)/n

+1

⎞
⎠
⎤
⎦

2

IAm∩Bn

= 1
n

n∑
i=1

⎡
⎢⎣√

n

⎛
⎜⎝ Yi,n√

nS(αn)
(i−1)/n

− 1
2

⎛
⎝ Yi,n√

nS(αn)
(i−1)/n

⎞
⎠

2

+ 1
3
θ3

⎞
⎟⎠
⎤
⎥⎦

2

IAm∩Bn ,

for θ ∈
⎛
⎝0,

Yi,n√
nS(αn)

(i−1)/n

⎞
⎠.

By Lemma 2, one can find

cm ∈ (0,
1
m

] such that for large n,S(αn)
i/n ≥cm for all i=0,1,2,··· ,n. (A.4)

Define

φcm (x,y)=

⎧⎪⎪⎨
⎪⎪⎩

(y
x

)2
, when x≥cm;(

3
cm4 x2 − 8

cm3 x+ 6
cm2

)
y2, when x<cm.

(A.5)

Note in particular that φcm is a function satisfying Hypothesis Lr in
Delattre and Jacod (1997) with r=2.

For n large enough, by Lemmas 2 and 3, (A.3) can be rewritten as

VnIAm∩Bn ≤ 1
n

n∑
i=1

φcm (S(αn)
(i−1)/n,Yi,n)IAm∩Bn +O

(
(logn)3

n1/2

)
IAm∩Bn

=U(n,φcm )IAm∩Bn +O

(
(logn)3

n1/2

)
IAm∩Bn ,

where U(·,·) is defined in (A.2).
Furthermore,

VnIAm =VnIAm∩Bn +VnIAm∩Bc
n

≤U(n,φcm )IAm +(Vn −U(n,φcm ))IAm∩Bc
n +O

(
(logn)3

n1/2

)
IAm∩Bn

=U(n,φcm )IAm +op(1) (by Lemma 1).

By Theorem 3.1 of Delattre and Jacod (1997),

U(n,φcm )→P

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ 1

0

∫ 1

0

∫
h(y)φcm (St,β�u+yσtSt/β�)dydudt, if β>0;

∫ 1

0

∫
h(y)φcm (St,yσtSt)dydt, if β=0.
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Note that since cm ≤1/m, we have

φcm (S(αn)
(i−1)/n,Y)=

⎛
⎝ Y

S(αn)
(i−1)/n

⎞
⎠

2

IAm +φcm (S(αn)
(i−1)/n,Y)IAc

m .

Lemma 4 gives, when β>0,

U(n,φcm )IAm →P

∫ 1

0

1
S2

t

(
σ 2

t S2
t + β2

6
− β2

π2

∞∑
k=1

1
k2 exp

(
−2π2k2 σ

2
t S2

t
β2

))
dtIAm .

It is easy to check that the above convergence is also true when β=0.
Therefore, for β∈[0,∞),

VnIAm

=U(n,φcm )IAm +op(1)

→P

∫ 1

0

1
S2

t

(
σ 2

t S2
t + β2

6
− β2

π2

∞∑
k=1

1
k2 exp

(
−2π2k2 σ

2
t S2

t
β2

))
dtIAm .

That is to say, for any δ>0, ε>0, there exists N, such that for all n>N,

P

(∣∣∣∣∣VnIAm −
∫ 1

0

1
S2

t

(
σ 2

t S2
t + β2

6
− β2

π2

∞∑
k=1

1
k2 exp

(
−2π2k2 σ

2
t S2

t
β2

))
dtIAm

∣∣∣∣∣>δ
)
<ε.

On the other hand, since Am ↗� as m→∞, there exists M large, such that

P(Ac
M)<ε.

Therefore, for n>N,

P

(∣∣∣∣∣Vn −
∫ 1

0

1
S2

t

(
σ 2

t S2
t + β2

6
− β2

π2

∞∑
k=1

1
k2 exp

(
−2π2k2 σ

2
t S2

t
β2

))
dt

∣∣∣∣∣>δ
)

≤P(Ac
M)+

P

(∣∣∣∣∣VnIAM −
∫ 1

0

1
S2

t

(
σ 2

t S2
t + β2

6
− β2

π2

∞∑
k=1

1
k2 exp

(
−2π2k2 σ

2
t S2

t
β2

))
dtIAM

∣∣∣∣∣>δ
)

<2ε.

This proves Theorem 1.
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A.3 Proof of Theorem 2 and Theorem 3

By (A.3), for large n,

√
nVnIAm∩Bn

=√
n

1
n

n∑
i=1

⎡
⎢⎣√

n

⎛
⎜⎝ Yi,n√

nS(αn)
(i−1)/n

− 1
2

⎛
⎝ Yi,n√

nS(αn)
(i−1)/n

⎞
⎠

2

+ 1
3
θ3

⎞
⎟⎠
⎤
⎥⎦

2

IAm∩Bn ,

for θ ∈
⎛
⎝0,

Yi,n√
nS(αn)

(i−1)/n

⎞
⎠.

(A.6)

Using the cm ∈ (0, 1
m ] as in (A.4), we define

ψcm (x,y)=

⎧⎪⎪⎨
⎪⎪⎩

(y
x

)3
, when x≥cm;(

4
cm3 − 3x

cm4

)
y3, when x<cm.

(A.7)

(A.6) can be further written as

√
nVnIAm∩Bn

≤√
nU(n,φcm )IAm∩Bn −U(n,ψcm )IAm∩Bn +O

(
(logn)4

n1/2

)
IAm∩Bn;

and √
nVnIAm

=√
nVnIAm∩Bn +√

nVnIAm∩Bc
n

≤(
√

nU(n,φcm )−U(n,ψcm ))IAm

+(
√

nVn −√
nU(n,φcm )+U(n,ψcm ))IAm∩Bc

n +O

(
(logn)4

n1/2

)
IAm∩Bn

=√
nU(n,φcm )IAm −U(n,ψcm )IAm +op(1),

where φcm is defined in (A.5), ψcm in (A.7) and U(·,·) in (A.2), and we have used
Lemma 3 in the above.

Note that ψcm (St,σtSty) is an odd function of y, and β=0; by Theorem 3.1 of
Delattre and Jacod (1997),

U(n,ψcm )→P

∫ 1

0

∫
h(y)ψcm (St,σtSty)dydt=0.
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Therefore,
U(n,ψcm )IAm →P 0.

As a consequence,
√

nVnIAm =√
nU(n,φcm )IAm +op(1). (A.8)

Also by Corollary 3.3 of Delattre and Jacod (1997), since φcm (x,y) is even in y,

√
n[U(n,φcm )−

∫ 1

0
�φcm (St,βn)dt]

→stably in law

∫ 1

0
�(φcm ,φcm )(St,0)1/2dBs,

(A.9)

where B⊥⊥W, and

�φcm (St,βn)

=
∫ 1

0

∫
h(y)φcm (St,βn�u+yσtSt/βn�)dydu

=
∫ 1

0

∫
h(y)

((
βn�u+yσtSt/βn�

St

)2
IAm +φcm

(
St,βn�u+yσtSt/βn�)IAc

m

)
dydu

=
(
σ 2

t + β2
n

6
1
S2

t
− β2

n

π2
1
S2

t

∞∑
k=1

1
k2 exp

(
−2π2k2 σ

2
t S2

t
β2

n

))
IAm+

∫ 1

0

∫
h(y)φcm (St,βn�u+yσtSt/βn�)dyduIAc

m (by Lemma 4) ;
(A.10)

and
�(φcm ,φcm )(St,0)

=
∫

hσtSt (y)φ2
cm

(St,y)dy−
(∫

hσtSt (y)φcm (St,y)dy
)2

=
∫

hσtSt (y)

[(
y
St

)4
IAm +φ2

cm
(St,y)IAc

m

]
dy

−
(∫

hσtSt (y)

[(
y
St

)2
IAm +φcm (St,y)IAc

m

]
dy

)2

=
⎡
⎣∫ hσtSt (y)

(
y
St

)4
dy−

(∫
hσtSt (y)

(
y
St

)2
dy

)2
⎤
⎦IAm

+
[∫

hσtSt (y)φcm (St,y)2dy−
(∫

hσtSt (y)φcm (St,y)dy
)2
]

IAc
m;
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hence

�(φcm ,φcm )(St,0)1/2

=
⎡
⎣∫ hσtSt (y)

(
y
St

)4
dy−

(∫
hσtSt (y)

(
y
St

)2
dy

)2
⎤
⎦

1/2

IAm

+
[∫

hσtSt (y)φcm (St,y)2dy−
(∫

hσtSt (y)φcm (St,y)dy
)2
]1/2

IAc
m

=(2σ 4
t )1/2IAm +

[∫
hσtSt (y)φcm (St,y)2dy−

(∫
hσtSt (y)φcm (St,y)dy

)2
]1/2

IAc
m .

(A.11)

Plug (A.10) and (A.11) into (A.9), and note that by the assumption that βn =
O(n−γ ),

√
n
β2

n

π2

∫ 1

0

1
S2

t

∞∑
k=1

1
k2 exp

(
−2π2k2 σ

2
t S2

t
β2

n

)
dt→0 a.s. on Am as n→∞.

One has,

√
n

[
U(n,φcm )−

(∫ 1

0
σ 2

t dt+ β2
n

6

∫ 1

0

1
S2

t
dt

)]
IAm

+√
n

[
U(n,φcm )−

∫ 1

0
�φcm (St,βn)dt

]
IAc

m

→stably in law

ZIAm +
∫ 1

0

[∫
hσtSt (y)φcm (St,y)2dy−

(∫
hσtSt (y)φcm (St,y)dy

)2
]1/2

dBsIAc
m ,

where Z∼∫ 1
0 (2σ 4

t )1/2dBs,B⊥⊥W.

For any continuous function g that vanishes outside a compact set, the above
stable convergence implies that ∀E∈F ,

E

[
g

(√
n

[
U(n,φcm )−

(∫ 1

0
σ 2

t dt+ β2
n

6

∫ 1

0

1
S2

t
dt

)]
IAm

)
IAm IE

]

→E

[
g

(∫ 1

0
(2σ 4

t )1/2dBsIAm

)
IAm IE

]
.

(A.12)
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And by defining ηcm (·,·) to be

ηcm (x,y)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1
x

)2
, when x≥cm;

(
3

cm4 x2 − 8
cm3 x+ 6

cm2

)
, when x<cm,

one has,

Vn
0 IAm =VnIAm − β2

n
6

U(n,ηcm )IAm . (A.13)

Again, by Theorem 3.1 of Delattre and Jacod (1997),

U(n,ηcm )IAm = 1
n

n∑
i=1

1

(S(αn)
i/n )2

IAm →P

∫ 1

0

1
S2

t
dtIAm .

and
√

n

(
β2

n
6

U(n,ηcm )− β2
n

6

∫ 1

0

1
S2

t
dt

)
IAm =OP(β2

n)=oP(1). (A.14)

By (A.8), (A.13), and (A.14),

√
nVn

0 IAm =√
n(U(n,φcm )− β2

n
6

∫ 1

0

1
S2

t
dt)IAm +op(1).

Also since that g is uniformly continuous, ∀E∈F ,

lim
n→∞E

[
g

(√
n(Vn

0 −
∫ 1

0
σ 2

t dt)IAm

)
IAm IE

]

= lim
n→∞E[g(

√
n

[
U(n,φcm )−

(∫ 1

0
σ 2

t dt+ β2
n

6

∫ 1

0

1
S2

t
dt

)]
IAm )IAm IE]

=E

[
g

(∫ 1

0
(2σ 4

t )1/2dBtIAm

)
IAm IE

]
(by (A.12)),

which implies, for any ε>0, there exists N, such that ∀n≥N,

∣∣∣∣∣E
[
g(

√
n[Vn

0 −σ 2
t ]IAM )IAM IE

]
−E

[
g

(∫ 1

0
(2σ 4

t )1/2dBtIAM

)
IAM IE

]∣∣∣∣∣<ε.
Note also that g is bounded, suppose |g|≤Mg. Recall that P(Ac

M)→0 , one can
choose M such that P(Ac

M)<ε/Mg.
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So for n≥N,

∣∣∣∣∣E[g(
√

n[Vn
0 −
∫ 1

0
σ 2

t dt])IE]−E

[
g

(∫ 1

0
(2σ 4

t )1/2dBt

)
IE

]∣∣∣∣∣
≤
∣∣∣∣∣E[g(

√
n[Vn

0 −
∫ 1

0
σ 2

t dt]IAM )IAM IE]−E

[
g

(∫ 1

0
(2σ 4

t )1/2dBtIAM

)
IAM IE

]∣∣∣∣∣
+2Mg ∗P(Ac

M)≤3ε

Hence we’ve proved that for all continuous function g that vanishes outside a
compact set, ∀E∈F ,

lim
n→∞E[g(

√
n[Vn

0 −
∫ 1

0
σ 2

t dt])IE]=E

[
g

(∫ 1

0
(2σ 4

t )1/2dBt

)
IE

]
,

i.e.,
√

n[Vn
0 −
∫ 1

0
σ 2

t dt]→L−stably

∫ 1

0
(2σ 4

t )1/2dBt.

This finishes the proof of Theorem 3. The proof of Theorem 2 is basically
contained in the proof above.

A.4 The Case of General μt and σt

Step 1: For general cases when μt 	=0, if there exists Lσ ,Uσ ,Cμ∈ (0,∞), such that
Lσ ≤σt ≤Uσ and |μt|≤Cμ for t∈[0,1], the previous results all hold.

For the simplicity of notation, we consider the log scale. Let P be the probability
measure corresponding to the system

dXt =σtdWt

and Q the probability measure corresponding to the system

dXt =μtdt+σtdWQ
t ,

where Wt and WQ
t are standard Brownian motions under P and Q respectively.

Note that by the Girsanov Theorem (see, for example, page 164 of Øksendal
(2003)), for bounded σt and μt (as stated in the conditions of “Step 1”), P and Q are
mutually absolutely continuous.

The following proposition justifies the conclusion of “Step 1”.
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Proposition 1 (Mykland and Zhang (2009)) Suppose that ζn is a sequence of random
variables which converges stably to N(b,a2) under P (meaning that N(b,a2)=b+aN(0,1),
where N(0,1) is a standard normal variable independent of F , also a and b are F measurable).
Then ζn converges stably in law to b+aN(0,1) under Q, where N(0,1) remains independent
of F under Q.

Step 2: for locally bounded σt and μt, the stable convergence and the
convergence in probability stay valid.

This can be proved by a localization argument which uses essentially the same
techniques as in the derivation in the last part of Section A.3. For example, to
unbound σt, one considers a sequence of stopping times τm corresponding to a
sequence of positive constants σm which increases to infinity as m→∞: τm =min{t :
σ 2

t ≥σ 2
m}, and note the fact that the sets {τm>T}↗�.

In particular, the locally bounded assumption is automatically satisfied when
σt and μt are continuous.

A.5 Proof of Theorem 4

Similar argument as the Proof of Theorem 3 in Li and Mykland (2007) gives the
result.

Received April 15, 2011; revised December 4, 2013; accepted January 8, 2014.
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