The Influence Analysis of Parameter
Estimation in Linear Errors-in-Variables

Model

Abstract

This paper discusses properties of the parameter estimation
of the Linear Errors-in-Variables Model Y; = z7b+a+e¢;, X; =
z; + u;(1 <4 < n). The estimations of parameters a, b, o2 are
derived by using the nearest neighbor-generalized least square
method. By analyzing the properties of the unknown param-
eters a, b and o2, we show that the method can obtain good
estimation when the data set is good, but the influence func-
tions tell us that the method is not robust: even there is only
one point in the data set that is polluted, the result would be
unacceptable. Fortunately, we find that the influence functions
also provide us with a diagnostic method, and we can obtain
better estimations by deleting the outlier.

In the process of proving the main results, we first explore
the properties of the explicit expressions of the parameters
when X is one dimensional, and when we could not have ex-
plicit expressions of them in the case when X is more than
one dimensional, we use another way—Taylor’s Expansion—-
to gain the same results. Also, two results of Cui & Li (1998)
are verified in this special case.

We prove the main results not only via theoretical method
but also by simulation—-we developed data sets randomly for
the model above and the properties of the data sets fit our
results quite well. An example about the probability of the
transformation from a suspected case to a real SARS case in
Beijing is given to illustrate the application of our results.

Keywords: Errors-in-variables Model, Measurement Er-
ror, Local influence, Linear Regression.



1 Introduction

We consider the following linear Errors-in-Variables model(EV
model):
— T
{ Y=2"b+a+e (1.1)

X=z+u

where X is a random vector in RP, x and u are p X 1 unobserv-
able covariates and measurement error vectors respectively. b
is a p X 1 vector of unknown parameter. Y is a scaler response
and e is the model error.

It is assumed that z and (e,u”)” are independent. Let
¥z = Cov(z) and £, = Cov(u) be the covariance matrices of
the covariates and the measurement error. In order to identify
model (1.1), we assume ¥, is a positive definite matrix(PDM)
and ¥; =: ¥, /var(e) is a known p x p PDM. Without lose

of generality (otherwise, transforming X to 21_1/ ’x ), we may
assume

T

E[(e,u")"] = 0,Cov|[(e,u”)"] = 0*I, 1,

which means e and u have the same dispersion parameter o2 >
0. This is the standard framework taken by Cui and Li[1].
Another way to identify model(1.1) is to assume that 3, is a
known p x p PDM (Fuller|[2]).

Model (1.1) is often encountered in the situations where
the true values of a set of variables satisfy the following exact
relationship

y=z"b+a. (1.2)
In these situations we often want to make inference of a and
b through the values of y and . However,what we often en-
counter is that y is unobservable or even both y and z are
unobservable. If y is the only unobservable variable, the well-
known linear model is introduced:

Y=2"b+a+e. (1.3)



In this case, we can use the least square method[3]. If both z
and y in (1.2)are unobservable, it is natural and necessary to
consider model(1.1), which is an EV model. EV models may
be applied to many fields such as economics, biology, forestry
and so on.

Many researchers have paid attention to EV models due
to their simple form and wide application. Comprehensive re-
views of the research and development of EV models can be
found in Fuller[2] and the references therein. An important as-
pect of there research is to explore the whether the methods are
robust. A rather comprehensive account of the approach based
on influence functions was given in Frank R. Hampel, Elvezio
M.Ronchetti,Peter J.Rousseeuw and Werner A.Stahel[11].

The objective of this paper is to discuss model(1.1) when
the estimations of a, b, 02 are obtained by using the nearest
neighbor-generalized least square method. It is shown that the
method can obtain good estimations of a, b and ¢? when the
data set is good, but the method is not robust. The influence
functions show this property and can help us detect outliers
and get better estimations using this un-robust method.

The paper is organized as follows: we formulate the estima-
tions and give the main results in section 2; methods to prove
the main results are presented in section 3 (we use different
methods to obtain the results in the one dimensional case and
the multivariate case); section 4 provides simulation of all the
results; an example about the probability of the transforma-
tion from a suspected case to a real SARS case in Beijing to
illustrate the application of our results is given in section 5.



2 The construction of the estima-
tions and main results

Suppose {(X; = (Xi1, Xiz,- -+, Xip)",Yi)1 < i < n} is a sam-
ple of size n for model (1.1). The estimations of a, b, 0% are
obtained through the following process.

We first give some notations:

> i Xi 2ie1 Vi
Xy = ===V = ==—

X(im) = Xi = X(n) Yim) = Yi — Y
X = (X17X27"' aXn)T Y = (Y17Y2"" 7Yn)T

X = (Xnp Xy s X)) Y = Vg Yoy Yinn))”

= T

T(im) = Ti — Z%i = (Zan) Ten)s  Lnm))

We estimate b first. Since z]’s are unobservable, the least
square method may be invalid. But we can obtain by, the esti-
mation of b, by using the generalized least square method, that
is, defining by, as one of the solutions of

Vi — X7, )0
Z| ’1+_||b 2 = min(b € R). (2.1)

It follows from (2.1) that b, satisfies

(1416 |2 (XTY =X X b, )+[Y 7Y —2Y 7 X by 47 (X" X )by b = 0
(2.2)
If p = 1,(2.2)becomes

ZX(zn Yv(zn) b + Zin (i,n) b _ZX(zn?zn):O
=1
(2.3)



Remark 1. If p = 1, from (2.3), we obtain

Bn (X(l,n)~> Y’v(l n) X(Q n)s }7(2 n)s " X(n n)» ~(n,n)) ~ ~
NV =K ) (R (R Y )P AT K Viim)?
- 227, 1X(z n)Y—U n)

(2.4)
If p > 2,0, has no explicit expression.
We define the estimation of a and o2 as
&H(XlaYbX?aYQaXnaYn) :17(71,) _X(Tn)(;n (25)’

_ Z (Y — X7 by — )

6'721,(X1’Y17X23Y2""Xn’yn) = 1+I;2
n

1
n -
=1
(2.6)

respectively

Rewrite the n-th point (X,,Y;,) as (z,y.) and let

T(ep) = Tx — X(n)ag(*,n) =Y — 1_’(71),

we obtain
Theorem 1. When the former n-1 points were selected from
the sample, and the n-th point (z.,y) is a fixed point, then
{a,322,, {by}22, and {62}%2, are convergent.

Now suppose that

2 2
n—0 .

lim a, = a; lim bn—b lim &
n—oo n—oo n—oo

Write

I;n(X(l,n)a (1n)s """ i(*,n)ag(*,n)) = En(.’L'*, y*)

b1 (X1, Yoy Kinmt.n-1)s Yin1,n-1)) = bns
&R(X(l,n)aﬂl,n)a * L (x,n) g(*,n)) =an (.Z‘*, y*)

&n—l(X(l,n)a?v(l,n)a Tt X(nfl,nfl)a ?(nfl,nfl)) = dn—1
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&Q(X(l n)» 1~/(1 n)s " ( y(*n) (:L‘*,y*)

62—1(X(1,n)’?v(1,n) X(n 1,n—1)» Y(n 1,n— 1)) :63—1

Theorem 2.

lim n[by (T, Ys) — bp—1]

n—oo

_ (AHbIP)[(z«—Ez)" (yx«— Ey)—(zx—Ez)" (22— Ex)b]

(1+A|b||2)cov(w)

4 [ =Ey)"(y = By) = 2(y. — By)" (3. — E)+b7 (2. — Ez)" (2. — Bz)b]b
(L+[[6l[?)cov(Z)

= f(x*ay*)
(2.7)
E(f(X,Y)) =0;
B 1 _ B (en — upb)? - b
Cov(f(X,Y)) = @)’ Cov|(ep, unb)(wn+un)+—1 i

Remark 2. Ifp=1,

b((y« — BY)? — (24 — Ex)?) — (b* — 1)(zs — Ez)(y. — BY)

f(Ze,ys) = (14 0?) - cov(x)

(2.8)
Theorem 3.

limy, o0 n[dn(a:*, y*) - d"—l]
= (yx — EY) — (2« — EX)"b— (Ex)" - f(Zx, Ys) (2.9)
=: 9(T+, Yx)

E(g(X,Y)) =0

Theorem 4.

limy, 00 n[&%(x*, y*) - &n—l]

— —(z+«—FEx)7b)?
— (- Eyhhb”Z Ez)6)° _ 52 (2.10)
=: h(l'*,y*)

Eh(X,Y))=0



(en — upb)?
T

Theorem 5. If p=1, the graphs of f(z.,y.) and h(z,,y,) are

hyperbolic paraboloid (see Figure 1 below ) and parabolic

cylinder (see Figure 2 below) respectively.

Cov(h(X,Y)) = Cov(

Figurel

Figure2




Remark 3. We can see the influence of one point(z., ) to
parameters by exploring the heights of f(x., y«)andh(z.,ys) in
the graphs. Additionally, by deleting some point that is most
influential, we may obtain better estimation of the parameters.
Property 1. The value of the influence function f(z.,ys)
can reach both 400 and —oo. It equals zero when the n-th
point(z,, y«) when the n-th point(z.,y.) satisfies (y. — EY) —
(z« — Ex)"b
Property 2. The graph of the influence function h(z.,y.) is
symmetric with respect to the line y = z7b. Its value ranges
from —o? to +oo: it reaches its minimal value when the the n-
th point(x,,y.) satisfies (y. — EY) — (x« — Ex)"b and the value
would be close to zero when (z,,y.) comes from model(1.1).

3 Proofs of main results

3.1 Proof of Theorem 2 when p=1

- N A—-B+C—-D
N0 (Tu, ys) — bp_1] = E
where
n B n—1 B
A =D (Y=Y = (Xi— X)) Y (Xi=X(ne1) (Yi—Yno1));
1= =1
n—1 ~ ~ n ~ ~
B =Y (Y~ Y1)’ = (Xi—Xn 1)) D (Xi— X)) (Vi = ¥());
=1 =1
n—1 ~
C= Z(XZ - X(n—l))(Yé — Y'(n—l)) \/5,
=1



n n

C' =D _((Vi~Yn) = (Xi= X)) P+ (Xi— X () (Vi— Vi) s

=1 i=1
D= ZX — X — Y - VD',

D' =[5 (Y = Yine)? = (Xi = X))

+4(Z?:11(X = Xn-1))Yi = Yiuo1)))?;

and
n B B n—1 B B
E=2) (Xi— X)) (Vi — Vi) D (Xi = Xn1)) (Vi = Yino1y)-
i=1 i=1
Note that
v ;l— Xz' v T Xn 1
X(n = E;Ll :X(n—1)+ n( )a (3 1)
N "Y,  - e — Yipn_
Y= ZZ:I = 1/(n—l) + Y ( 1), (3 2)
n n

2= 1(X‘—X< )Y = Vi) _

n _m— X _ T
= ot ST N
=i 1(X X(" 1)) (Y; — Y(n 1)) (n—1)(@x = Xn— 1))(:’/*_Y(n71))

El I(Yz )/(n 1)(‘7“ _X(n 1))+E1, I(Xl X(n 1))(:‘/* Yv(n 1))
n 7

(3.3)

S = Yim))? = (Xi — X(w))?) ]
= > (Y - Yin-1) — M) — (X — X(n1) — ””*_);&)2]
+((n — 1)%) —((n— 1)%)

n

_Zz 1[(Y 17(n 1)) (X X(n 1) )2]
(ﬂ D(y« Y 1)) —(2s—X(n-1))’]

2[21 Y=Y 1))(1/* V1))~ (Xi—X(n_1)) (@ —X(n_1))]

(3.4)



we obtain
A—B

_ {(n—l)[(y*—17(n_1))2—(w*—)_f(n_1))2]

2[2?_11((Y'—Y(n71))(y* Y 1)) (X X(nq))(w*—ff(nq)))]}

—{Z [(Y Y(n 1)) (X Xn1)’l}

[n 1)(z* —X(n— 1))(?4* Yin_1))

(A Y(n )@ =X (n_1)) HXi =X (n—1)) (s —Y(n 1)))]

It is obvious that

E(X)=E(Y)=0.

We know
limy, A-B
= BXY)" ((y. ~ BY)? ~ (3. ~ EX))
—~E(Y? - X?).(z, — EX)(y. — EY)
E 171\ 2
Az = 2EEY)
So
lim,, o, MA=B)
_ BXY)((y«=BEY)*—(2:~EX)*)—E(Y?—X?)-(z. —~EX)(y« —EY)

2(E(XY))?

Similarly, we can calculate out that

n—1
C= Z AXv(i,nfl)Yv(i,nfl)\/a
=1

where

1 1/~ ~
Cl - [Zn (Y'(fn 1) X(ZZ n— 1)) + = 1( (2*,77,—1) - x%*,’n—l))
227, 1 (Yv(z n— l)y(* n— 1) X(z n— 1).1)(* n— 1))]

+4(Zz -1 X (i,n— 1)1/(1 n—1) +1~%x(*,n71)y(*,n71)
E’L 1 Yv(l n— 1)‘1“(* n—1) 2771 X(i,nfl)g(*,nfl) )2
n n
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(Zz 1 X'Ln l)Yr(zn 1)+Qx(*n l)y(*n 1)

IZZ 1 an 1)L (x,n—1) Zz 1 X(zn l)y(*n 1)
VOO (2 = X2, )2 + 4 X 1) Vin 1)?

~—

!

C? — D2
= (25 L %(Zn 1)Y(1n 1))2 . {(n—l)(ﬂ?* "_nl)_i%*,n—l))

—I-(?D o Vin -1, 1) Ko e 1)))2 )

+izn 1( {in=1) X(QZn 1)) (nl)(i/(*’"nl)g”(* nnl))l 2 )
Z(n_i)zl (f(j:ln ~1)19(*,71 1)~ X(z,nq)x(*,nﬂ)). (Y(m bR )

_T Zz 1(1/(zn l)g(*n—l)_X(i,n—l)i‘(*,n—l)) (y(Z*n 1) ?*n 1))}
+(Ez 1 X(M;L ) (x,n— ny2 +(E¢71 Y, nn—1)$(*,n—1))2
2(n—1)

+ L (x,n— l)y*n 1) Zz 1X(zn l)Y(zn 1)

n
Z?;lllf(zn 1)L (%,n—1) Zz 1 X(Zn 1)Y(1n 1)
z(nz—:%;le(w 1)¥(xn-1) Zz 1 Xin-1¥in1)
2(7?31)%'(*n l)y*n 1) Zz 1 1/(zn l)w(*n 1)

nZ T(x,n—1)Y(xn—1) Zz 1X(Zn l)y(*n 1)
+Z vt Y(z',n—l)w(*n 0 S X1y Jem1)]

. CQ_DQ
hmn—)oo T n3

= B(XY)? - 2E(Y? - X%) - (. — BY)? — (2. — EX)?)
—(E(YQ—XQ)) ( ) 2(zs — EX)(y« — EY)

2
n
2
n

. (C+D)-E e
i, T S BT (B X+ AP
So we get

lim,, 00 n(C_D)

E
c?-D?

= lim,, W o

_ _ EB(XY)EX2-X2)-((yx—EY)2—(2.:—EX)?)—(B(Y2—X?))? (2., —EX)(y.—EY)

AB(XY))2-V/(B(Y2-X2))?+4(E(XY))?

11



thus,

limy, 00 ’I’L[i)n (-T*, y*) - I;n—l]

_ (B2 -X2)+/(B(Y2=X2)2+4(B(XY))?))
C 2B(XY))2/(B(Y2-X2))2+4(E(XY))?
[E(XY) - ((y« — EY)* — (z. — EX)?)
—E(Y? - X?) - (z. — EX)(y. — EY))

=: f(Tu,Yx)

Because

EX? = Ex? + 0%, EY? = E(xb)? + 0

E(XY) = E((z +u) - (zb+¢)) = E(z?b + zub + ze + eu) = bEz?;
E(Y? - X?%) = (v — 1)Ea?,

we obtain

f(-T*a y*)
_ b~ By)> (2.~ E2)*) (0> 1)(. — Ez)(y.— Ey) (3-5)

(1462)-cov(z)

It is easily verified that

E(f(X,Y))=0 (3.6)
and
ov Tnten)?—(Tntun)?)—(82—1)(zn+un)(bTnten
Cov(f(X,Y)) — Cov[b((bznten) ((1:b2)g(lov((bz))2l)( +un)(bTn+en)]
_ 2,
= oy - Covllen — unb)(@n + uy) + L2220
(3.7)

which is the same as the result of Professor Cui[2].

3.2 Proof of Theorem 2 when p > 1

Ifp>1, b, has no explicit expression, and we can’t calculate
n(by, — by—1) directly. We tried to reach the result via another

way: using Taylor’s expansion.

12



Define vector function

Fny(b)
= (F1(b), F(b) - -- Fp(b))" o o o
=1+ BIP)EXTY - 2X7Xb) + 2Y7Y — 2Y7Xb + b (L X7 X)b]b.

From (2.2) we know
Fny(b) =0

Fin-1)(bn-1) =0

On the other hand, using Taylor’s expansion, we have

F(n)(bn) = F(n) (bn—l) + Cn(bn - bn—l) (3-8)
where
OFmyn OFmy1  OFw), 1y o
oby 7 Oby 6bp b= bn—1+§1(bn*bn—1)
OFmy)2 9Fm)2 3F<n)2| A L
Cn — oby ? Oby abp b= bn—1+§2(bn_bn—1)
e e e
Fyp Fmyp . 3F(n),p‘ . .
96y ° by by 1b=bp_1+&p(bn—bn_1)
for some 5 = (£1a£27 T agp)‘r € [07 1]]7
Note that
Fpy (bn-1)

= (1 + [|bp1|I? )(~ (Tg) ~( ) — %X(Tn) X (n)bn—1)
Y0 Yoy — 270,
= (14 [|bp 1|2 e [ ( (n-1) Yin_1) + Z13)
_ 11()2{” X Xin 1y + 8184 )bp1] i )
+[ 7 (Y (n—1) Yin- 1)+§*@7*)—n21(17( 1) X(n— 1)+@7*5c*)b ~1]}bp1
L B 1) (bn1) + (L4 [1Bn—11%) (5 579 — 581 8ubn1)
+[%@I@*—%ﬂlx*bn Vb (2T by )b,

13



o (3.8) becomes

0—0+(1+|Ibn 1) (EGe — 5ETFcbn1) o
HETTGs — 207 &ubn 1 + b7 1 (2578 bn 1]bn 1 + Cn(bn — by

which means that

n[Bn(fE*;y*) _i)n 1]
= Cp ' A= (14 a1 (5 #15x — 281 F.bn1) (3.9)

~ A~

[ Y Ys — ny*l'*bn 1 +bn 1(1-';77—53*)bn71] nfl}

Next, let’s explore the properties of Ci,:
by direct calculation, we get

OF (n)
8b “ o~ ~ o~
—(1+ [} 2X"X + Za( XY - LX7Xb)"
( YV — 2YTXb +b7(: XTX)b)Ip + (—2X7Y 4+ 2X7Xb)b"

From (3.9) we see that {b,}%2, is convergent, so let’s sup-
pose b, — b as n — oo. We have the following results:
as n — 0o,

1 ~ =~

~X"X — Cov(7) + o’I,
1 ~ -
—X"Y — Cov(Z) - b
n

1~ -
—YTY = b"Cov()b+ o?.
n
So we know
Cn — —(1+b]]?) - Cov() (when n — 00).
Then we can conclude
lim n[by (€4, Yx) — bp—1]
n—od
_ (4B [(@s—E2)" (yx—EY) (24— Ez)" (2, — Ex)b]
(1+||b||2)cov(m)

+[(y* EY) (ys—EY)—=2(y. —EY)" (2, — Ex)+b" (z. — Ex)" (z.— Ex)b]b
(1+(6][*)cov() '

It is the same as what we obtained in the case of p = 1.

14



3.3 Proof of Property 1

When p =1,
R
= (1+b2)l?cov(w) [(y* - IJQ—ZII*)Z - ((b2—|b—1$*)2]’

thus one easily sees that the graph of f(z.,y.) is a hyperbolic
paraboloid. It is unbounded: its value can reach both +o0o and
—oo (see graphl).

Also, the value equals zero when ((z. — Ex), (y« — EY))

satisfies . .
-1 +1
o ) =

(3.4) is equivalent to y = bz or y = —%x. That is to say, if and
only if the point ((z. — Ex), (y« — EY)) is on the line y = bz
or on the line y = —%m, the added point dose not affect the

(y — ). (3.10)

estimation b,. But when it goes far away from these two lines,
the effect to the estimation would become big.
By the similar way, we calculate out the results when p > 1.

3.4 Proof of Theorem 3

n(&n(_w*ay*)__ &(L—l)

= 1Y) = Xy = Yin1) = Xfo1)bn-1)

5 Yo . =X v or i
= 1Y)+ T = (X + ——20)bn — Yooty — X[y bo)

=Y aT-X7 1y o, A N

y 1i( Hn n( libn — )f'(nfl)_(bn — bnfl)) A

= (y* - 1/(nfl)) - (551— - X(Tn_1))bn - X(Tn_l)n(bn - bnfl)
= (y« — BY) — (22 — EX)"b — (Ex)" - f(2+,7x)
=g(zs,9:) (asn — o0)

n

(3.11)
It is obvious that E(g(X,Y)) = 0.
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3.5 Proof of Theorem 4

Using the same technique as in the section 3.1, noticing the
formula (3.1),(3.2),(3.3)and (3.4), we obtain

n[a-%(x*ay*) _~&?L—1]~ N R )

= [ 2y (Vi) =X (,m) b (@59)) >+ (= @b (w4,94)) 2

N . LB (moye)
1 . Ei:l (Y'(i,n)_-X(i,n)bnfl) ]

(3.12)

n-l 146,
= O(.’E*,y*) + P(z*,y*) + Q(z*,y*)

where

0(37*’?/*) = (bn(z*,y*) - bn—l) A A
_[Z?:_ll Yf(—(bn(x*:y*)'ﬁbn—1))—2?:_11A2XiYi(1—bn (zx,yx)bn—1)
(T4bn (2x,y4)2) (1462 )
+ ?:_11 X?(En(z*ay*)‘fanfl)]
(14bn (@x,y+)2) (1462 ;)

n—1

’

-1 7 —1 7 -1
P(.’L'*a y*) == _[Z?:l Y;2 B bn_l Z?:l QXZY; + b’IQ’L—I Z?:l XZ]

tl.

(n=1)A+b_y) ’

~ 1] ~ & ~
Qaary) = D 2im 52 TS 2V D)
T (Fba(ee90)?) .
B e AT 20 e D L R R A G0
(4 (@90)%)
_J’_nT_l(g(*,nfl)?i(*,nfl)bn(z*ay*))2
(1450 (2,9:)?)

From (3.12) we see that{62} is convergent.
Suppose 62 — 02(n — +00). We can see that

0(37*5 y*)
— H2t)  [(=20) (12 Ba? + 02) — (1 - b*)2bEa? + 2b(Ea? + 07
=0 (n— +00)
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M Vi —ba1 X )2
Pz.,9.) = (n—1)(1+52_,)
=—62 | = —0%(n— +o0)

(W= BY) = (. —Bapp

Thus we conclude that

[y — EY()1—+(ZZ*)— EXDF 02— b, ) (n — +o00).

(3.13)
We can calculate out by the same method that in case p > 1,

n(ai—aQ) -

1My, 00 N[G2 (Tay Yu) — 62_4]
_ (=B —(@:—E2)h) 2
FEEIE)

which is the same as that in case p = 1.
We see that E(h(X,Y)) =0

and

Co

<

(h(X,Y))
(h(X,Y))?)
[
(7o) -

(((e(lﬁz)) )? — 207 (e(1+1;2)) +0]
en—Un
(14b2) )

€en—Un 2
— Cov(ﬁ)

o
@hjbj

which is also the same as the result of Professor Cui[l]

3.6 Proof of Property 2

When p = 1, from (3.12) we see that the graph of h(zy,yx)
is a parabolic cylinder: it is symmetric with respect to the
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line y — EY = b(z — Ex). When (z,,y.) lies on the line,
h(z+, y«) reaches its minimum value —o?; when (., y.) satisfies
[(y*_EY()l_jL(g;)_EX)b]z = 02, h(zs,ys) = 0. It is to say, when
(24, y«) comes from model(1.1), h(z,, y«) would be close to zero.
While if the point (x4, y«) goes far away from its symmetry axis
y — EY = b(z — Ex), the value of h(z,,y.) may reach oc.
Similarly, we can extend the results to the case p > 1.

3.7 Proof of Theorem 5

The proof of theorem 5 can be found in the proof of property
1 and the proof of property 2.

3.8 Proof of Theorem 1

(3.9) tells us that {b,}°, is convergent ; (3.11) tells us that
{@n}S2 ; is convergent ; (3.12) tells us that {62}, is conver-
gent. These complete the proof of Theorem 1.

4 SIMULATION:

Without lost of generality, we only consider the case
when p = 1.

4.1 About b,

We developed 200 data sets by computer random simulation
(See Program 1). Each of the data sets contains 100 points of
(X,Y),
Y=x+e
{ X=z+u
where x ~ N(0,1),e ~ N(0,0.25),u ~ N(0,0.25). By formula
(2.4), we can figure out bigg from the j-th data set, so we have
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200 b5 (see attached table 1).
Their average is

2007 .
- 16100,

E(b) = = 0.9991
®) 200 ’

quite close to the real value “1”. And the variance is

200 72 200 7. )
~ Z3;’:117100,1' _ (Ejzlblooﬂ

_ 2 _
D(b) =~ 200 ) = 0-0060,

which is very small. These tell us that formula (2.4) can obtain
quite good estimation.

4.2 About q,

By formula (2.5) we obtain G1go,j(j = 1---200) (see attached
table 2). Their average is

2005
i _ Xi5a100,4

(a) = 55— = —3.9267¢ — 005,

quite close to the real value “0”. And the variance is

~ Z2'201?’%00 j 22'201?’1001'
D(b) = J200 A Jzoo )2 = 0.0038,

which is very small. These tell us that formula (2.5) can obtain
quite good estimation.

4.3 About 52

By formula (2.6) we obtain &%Oo,j (j =1---200) (see attached
table 3). Their average is

200 ~2
20

ﬂ_gggl%
= 0. ,

E (& %00) = 200
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quite close to the real value “0.25”. And the variance is

pe?) = 2 0hos) B p 01y
200 200 ' ’

also very small. These tell us that formula (2.6) can obtain
quite good estimation.

4.4 About Theorem 1 and Theorem 2

Let’s choose randomly one data set from the sets developed in
section (4.1)(see the data set in table 4). It is a good data set
and

by (2.4) we get bigo = 1.0203;

by (2.5) we get a100 = 0.0096;

by (2.6) we get 6%, = 0.2596.

It is a quite good estimation as we see that errors are small
and the estimated line fits the real line quite well:

b — bigo| = 2.03% (4.1)
|a - &100‘ == 0.96% (4.2)
|0' - &100| == 3.84% (4.3)

We compare the real line and the estimated line in graph3:

Figure3
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But if one of its points is polluted, the result may be not
that good. For example, randomly choose one of the Y;'s and
let it be enlarged by 10 times, then 13100 becomes 1.9136 , G190
becomes —0.2073, and &%00 becomes (0.7311. The error becomes

b — bigo| = 91.36%

|a - d100| = 20.73%
|U - 5’100‘ = 192.44%
and the graph becomes

Figure4

—6L 4

All these tell us that the result would be unacceptable. But
as we know, there is only one point which affects so much to
the estimation of the parameters.

Let’s recall Theorem 2 and Theorem 4. For the functions

f(z«,ys) and h(z.,y.) have good properties as property (1)
and property (2), maybe they can help us detect the bad point.
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We try to find all the points’ heights in graph(1) to find which
point affects the estimation most and see what will happen if
we delete it.

First, let us check whether the limited value can be used
to estimate the effect of one point in a 100 point data set.

Without loss of generality, we check the f(Xig0,Y100) and
h(XlO(), Y100)1n the the data setl.
By (2 4) we obtain b100 = 1.0203, bgg = 1.0281;
By (2.6) we obtain 6%, = 0.2596, 53, = 0.2602.
Thus

8100 - ng == —0.0078;

5300 — 029 = —0.0006

Via formula (2.8), we know the height of (X190, Y100) in graphl
is -0.7447, divided by 100, the weight of (X100, Y100), is -0.0074,
quite close to the practical value -0.0078.

Via formula (2.10), we know the height of (X100, Y100) in graph2
is -0.0594, divided by 100, the weight of (X100, Y100), is -0.000594,
also quite close to the practical value -0.0006.

These demonstrate that the Theorem 2 and theorem 4 can be
used here.

_ 100

Second, let the approximate value X 99y = &gg& re-

place the E(x)in (2.5), and let the approximate value X 2(99) -
— $100 x> 55100 x

(X (99))? = =55~ —(=34—)? replace the Cov(z) in (2.8) and

(2.10). We can figure out the value of f(X;,Y;) and h(X;,Y;)
(see table 4 to find the data, see program?2 to find the program)
, then we can plot the graph of f(X;,Y;) and g(X;,Y}):
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Figured

Figure6

From the graphs above, we see clearly that the 45th point

is an outlier: it affects both the estimation of b and o2 a lot.
Next, let us delete this point and find new estimations for the
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parameters. We use the data set {(X;,Y;) : ¢ # 45} to find byo,
&99 and 5’39:
bgy = 1.0134
agg = —0.0811
529 = 0.2543

Again, a quite good estimation was derived. we see that errors
are small and the estimated line fits the real line quite well:

b — broo| = 1.34%

|a - &100‘ == 8.11%
|O’ — 5’1()()| = 1.72%

We compare the real line and the estimated line in the graph?7:

Figure7

2 4

|
w

|
N

|
R
ol
R
N
w
IN



Till now, we have already seen how Theorem 2 and Theorem
4 can help us when there is an outlier. One may want to ask
what will happen if all the points were good.

Let us also give the graphes of f(X},Y;) and h(X},Y;) of
the unpolluted data set(data set 1)(see tableb to find the value
of f and h):

Figure§
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From the graphs we see all the points are distributed uniformly
and all are close to zero. Also, direct computation yields the
average of f(X;,Y}) is -1.3600e-004 and the variance is 0.3653;
the average of h(X;,Y;) is 0.0080 and the variance is 0.1259.

The numbers demonstrate that all the points in the data
setl are good enough to be used to estimate the parameters,
and in fact, as we have already seen above((4.1),(4.2), (4.3)and
graph3), we surely have gotten a good estimation using this
data set without deleting any point.

From all those we listed above, we see that when we use
this method to estimate the parameters in model(1.1), it may
not “the more the better”. We should first explore whether
all the data in the data set are “good”. When one point itself
affects the estimation a lot, maybe it is an outlier, and perhaps
we would obtain a good result after deleting it.

4.5 Conclusion of the simulation:

From the simulation, we see the method is good concerning the
model when the data set is good. The theorems can be used
to analyze practical data. The influence functions provide us
with a diagnostic method and we can obtain better estimations
after deleting the outlier which influences the most.

5 Application

SARS, an atypical pneumonia of unknown aetiology, was recog-
nized at the end of February 2003. In late March,2003, it came
to Beijing. Unfortunately, more and more people are infected
by it and many people are suspected to be infected.

The cumulative SARS cases are increasing everyday, what’s
more, there are still a large number of people that are suspected
to be infected. so people living in Beijing feel more and more
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anxious about the illness. But maybe after we analyze the
probability of the transformation from a suspected case to a
real SARS case, we will feel some what released.

We consider the numbers of those after May 1. The data are
as follows: (coming from the Ministry of Health P.R.China):
New SARS Cases:

[12296 1146998 70 97 94 48 54 42 48 48 39 27 28];
cumulative Doubted Cases:

[14151468 1493 15371510 1523 1514 1486 1425 1397 1411
13781338 1308 1317 1265].

FigurelO
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The cumulative suspected cases and the new SARS cases
in Beijing can be described by Model (1.1). As it is a special
practical problem, we may not follow the step above. First,
we should explore the “a”. Since it describes the number of
new SARS cases when the suspected case is 0, we can suppose
a = 0 by our experience. After we fix the parameter a, we can
compute the estimations as follows:

b= 0.0501
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02 = 714.2123

That is to say, the probability of the transformation from
a suspected case to a real SARS case is 5.01%.

It is a big number: many of us don’t hope it happen. We
try to know weather all the data support this result or weather
there’s some outlier that made the result not true:

let us plot out the graph of f(X;,Y;) and h(X;,Y;):

Figurel2

Figurel3

2500

2000

1500 [

1000

—500

—1000 L L
(o} 5 10 15

28



We use one sentence from WHO to explain why there may
be an outlier : “As SARS is a diagnosis of exclusion, the sta-
tus of a reported case may change over time. This means that
previously reported cases may be discarded after further inves-
tigation and follow-up.” From the graphs, we find that the 1-st
point is an outlier. We delete it and compute the estimations
again, we obtain:

b= 0.0476
02 = 566.4116

This result may be closer to the real rule of this disease.
It tell us that the rate of the transformation from a suspected
case to a real SARS case is even smaller than it seems, and in
fact, we could see from the data set that the rate is not big
especially lately, for it is still changing, we should update our
model frequently and we can fully understand the nature of it
finally.

Thus, we could conclude that as a person living in Beijing,
we should not worry too much about the seemingly large num-
ber of the suspected cases, the rate of the transition of them to
a real SARS case is very small. So, just do not feel too worried,
but of course you should always take good care of yourself!

Acknowledgement The author is grateful to Professor
Hengjian Cui who enlightened her to write down this paper.
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