
Microstructure Noise in the Continuous Case: The

Pre-Averaging Approach ∗

Jean Jacod †, Yingying Li ‡, Per A. Mykland §,
Mark Podolskij ¶, and Mathias Vetter ‖

July 2008

Abstract

This paper presents a generalized pre-averaging approach for estimating the inte-
grated volatility. This approach also provides consistent estimators of other powers of
volatility – in particular, it gives feasible ways to consistently estimate the asymptotic
variance of the estimator of the integrated volatility. We show that our approach,
which possesses an intuitive transparency, can generate rate optimal estimators (with
convergence rate n−1/4).
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1 Introduction

The recent years have seen a revolution in the statistics of high frequency data. On the
one hand, such data is increasingly available and needs to be analyzed. This is particularly
the case for market prices of stocks, currencies, and other financial instruments. On the
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other hand, the technology for the analysis of such data has grown rapidly. The emblematic
problem is the question of how to estimate daily volatility for financial prices (in stochastic
process terms, the quadratic variation of log prices).

The early theory was developed in the context of stochastic calculus, before the finan-
cial application was apparent. The sum of squared increments of the process was shown
to be consistent for the quadratic variation in Meyer (1967). A limit theory was then
developed in Jacod (1994) and Jacod and Protter (1998), and later in Jacod (2008).

Meanwhile, these concepts were introduced to econometrics in Foster and Nelson (1996)
and Andersen and Bollerslev (1997, 1998). A limit theory was developed in Barndorff-
Nielsen and Shephard (2002), and Zhang (2001). Further early econometric literature
includes, in particular, Andersen et al. (2000, 2001, 2003), Barndorff-Nielsen and Shephard
(2004), Chernov and Ghysels (2000), Dacorogna et al. (2001), Engle (2000), and Gallant
et al. (1999). The setting of confidence intervals using bootstrapping has been considered
by Goncalves and Meddahi (2005) and Kalnina and Linton (2007).

The direct application to data of results from stochastic calculus have, however, run
into the problem of microstructure. No-arbitrage based characterizations of securities
prices (as in Delbaen and Schachermayer (1994)) suggest that these must normally be
semimartingales. Econometric evidence, however, suggests that there is additional noise
in the prices. This goes back to Roll (1984) and Hasbrouck (1993). In the nonparametric
setting, the deviation from semimartigales is most clearly seen through the signature plots
of Andersen et al. (2000), see also the discussion in Mykland and Zhang (2005).

Statistical and econometric research has for this reason gravitated towards the concept
that the price (and log price) semimartingale is latent rather than observed. Research
goes back to the work on rounding by Jacod (1996) and Delattre and Jacod (1997).
Additive noise is studied in Gloter and Jacod (2001), and a consistent estimator in the
nonparametric setting is found in Zhang et al. (2005). Issues of bias-variance tradeoff
are discussed in Bandi and Russell (2006b). In the nonparametric case, rate optimal
estimators are found in Zhang (2006), Podolskij and Vetter (2006) and Barndorff-Nielsen
et al. (2006). A development for low frequency data is given in Aı̈t-Sahalia et al. (2005a).

There are currently three main approaches to estimation in the nonparametric case:
linear combination of realized volatilities obtained by subsampling (Zhang et al. (2005),
Zhang (2006)), and linear combination of autocovariances (Barndorff-Nielsen et al. (2006)).
The purpose of this paper is to give more insight to the third approach of pre-averaging,
which was introduced in Podolskij and Vetter (2006) for i.i.d. noise and for non overlapping
intervals. The idea is as follows. We suppose that the (say) log securities price Xt is a
continuous semimartingale (of the form (2.1) below). The observations are recorded prices
at transaction times ti = i∆n, and what is observed is not Xti , but rather Zti , given by

Zti = Xti + εti . (1.1)

The noise εti can be independent of the X process, or have a more complex structure,
involving for example some rounding. The idea is now that if one averages K of these
Zti ’s, one is closer to the latent process. Define Z̆ti as the average of Zti+j , j = 0, ..., K−1.
The variance of the noise in Z̆i is now reduced by a factor of about 1/K. If one calculates
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the realized volatility on the basis of Z̆0, Z̆t1 , Z̆t2 , ..., the estimate is therefore closer to
being based on the true underlying semimartingale. The scheme is particularly appealing
since it is obviously robust to a wide variety of structures of the noise ε.

The paper provides a way of implementing this idea. There are several issues that
have to be tackled in the process. First of all, the pre-averaging brings in a particular
dependent structure which necessitate an adjustive constant in front of the sum of squared
increments of the averages. Second, while the local averaging does reduce the impact of
the noise ε, it does not completely eliminate the bias. The pre-averaged realized volatility
therefore has to be adjusted by an additive term to eliminate the remaining error. Third,
one would not wish to only average over differences from non-overlapping intervals, but
rather use a moving window. Fourth, the estimator can be generalized by the use of a
general weight function. Our final estimator is thus on the form (3.6), where we note that
the special case of simple averaging is given in the example following Theorem 3.1. Note
that in the notation of that example, kn = 2K. Finally, the method used here is amenable
to much more general noise models than the most usual i.i.d. noise, independent of the
process X: see Section 2.

Like the subsampling and the autocovariance methods, the pre-averaging approach,
when well implemented, gives rise to rate optimal estimators (the convergence rate being
Op(n−1/4)). This result, along with a central limit theorem for the estimator, is given as
our main result Theorem 3.1.

What is the use of a third approach to the estimation problem, when there already
are two that provide good convergence? There are at least three advantages of the pre-
averaging procedure:

(i) Transparency. It is natural to think of the latent process Xt as the average of obser-
vations in a small interval. Without this assumption, identifiability problems may arise,
as documented in Li and Mykland (2007). Our procedure implements estimation directly
based on this assumption. Also, as noted after the definition (3.6), the entire randomness
in the estimator is, to first order, concentrated in a single sum of squares.

(ii) Estimation of other powers of volatility. The pre-averaging approach also provides
straightforward consistent estimators of quarticity, thereby moving all the existing esti-
mators closer to the feasible setting of confidence intervals. See Podolskij and Vetter
(2006) for results in the case of independent noise.

(iii) Edge effects. The three classes of estimators are similar also in that they are based
on a weight or kernel function. To some approximation, one can rewrite all subsampling
estimators as autocovariance estimators, and vice versa. The estimators in this paper can
be rewritten, again to first order, as a class of subsampling or autocovariance estimators, cf.
Remark 1. The difference between the three classes of estimators (and what is concealed
by the term “to first order”) lies in the treatment of edge effects. The potential impact
of such effects can be considerable, cf. Bandi and Russell (2006a). In some cases, the
edge effects can even affect asymptotic properties. Because of the intuitive nature of our
estimator, edge effects are less likely to be a problem, and they certainly do not interfere
with the asymptotic results.
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The plan of the paper is as follows. The mathematical model is defined in Section 2,
and results are stated in Section 3. Section 4 provides a simulation study. The proofs are
in Section 5.

2 The setting

We have a 1-dimensional underlying continuous process X = (Xt)t≥0, and observation
times i∆n for all i = 0, 1, · · · , k, · · · . We are in the context of high frequency data, that is
we are interested in the situation where the time lag ∆n is “small”, meaning that we look
at asymptotic properties as ∆n → 0. The process X is observed with an error: that is,
at stage n and instead of the values Xn

i = Xi∆n for i ≥ 0, we observe real variables Zn
i ,

which are somehow related to the Xn
i , in a way which is explained below.

Our aim is to estimate the integrated volatility of the process X, over a fixed time
interval [0, t], on the basis of the observations Zn

i for i = 0, 1, · · · , [t/∆n]. For this, we
need some assumptions on X and on the “noise”, and to begin with we need X to be a
continuous Itô semimartingale, so that the volatility is well defined. Being a continuous
Itô semimartingale means that the process X is defined on some filtered probability space
(Ω(0),F (0), (F (0)

t )t≥0,P(0)) and takes the form

Xt = X0 +
∫ t

0
bsds +

∫ t

0
σsdWs, (2.1)

where W = (Wt) is a standard Wiener process and b = (bt) and σ = (σt) are adapted
processes, such that the above integrals make sense. In fact, we will need some, relatively
weak, assumptions on these processes, which are gathered in the following assumption:

Assumption (H): We have (2.1) with two process b and σ which are adapted and càdlàg
(= “right-continuous with left limits” in time). 2

In this paper, we are interested in the estimation of the integrated volatility, that is
the process

Ct =
∫ t

0
σ2

sds. (2.2)

Next we turn to the description of the “noise”. Loosely speaking, we assume that,
conditionally on the whole process X, and for any given n, the observed values Zn

i are
independent, each one having a (conditional) law which possibly depends on the time and
on the outcome ω, in an ”adapted” way, and with conditional expectations Xn

i .

Mathematically speaking, this can be realized as follows: for any t ≥ 0 we have a
transition probability Qt(ω(0), dz) from (Ω(0),F (0)

t ) into R, which satisfies
∫

z Qt(ω(0), dz) = Xt(ω(0)). (2.3)

We endow the space Ω(1) = R[0,∞) with the product Borel σ-field F (1) and with the
probability Q(ω(0), dω(1)) which is the product ⊗t≥0 Qt(ω(0), .). We also call (Zt)t≥0 the
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”canonical process” on (Ω(1),F (1)) and the filtration F (1)
t = σ(Zs : s ≤ t). Then we

consider the filtered probability space (Ω,F , (Ft)t≥0,P) defined as follows:

Ω = Ω(0) × Ω(1), F = F (0) ×F (1), Ft = ∩s>t F (0)
s ×F (1)

s ,

P(dω(0), dω(1)) = P(0)(dω(0)) Q(ω(0), dω(1)).

}
(2.4)

Any variable or process which is defined on either Ω(0) or Ω(1) can be considered in the
usual way as a variable or a process on Ω. By standard properties of extensions of spaces,
W is a Wiener process on (Ω,F , (Ft)t≥0,P), and Equation (2.1) holds on this extended
space as well.

In fact, here again we need a little bit more than what precedes:

Assumption (K): We have (2.3) and further the process

αt(ω(0)) =
∫

z2 Qt(ω(0), dz)−Xt(ω(0))2 = E((Zt)2 | F (0))(ω(0))−Xt(ω(0))2 (2.5)

is càdlàg (necessarily (F (0)
t )-adapted), and

t 7→
∫

z8 Qt(ω(0), dz) is a locally bounded process. (2.6)

Taking the 8th moment in (2.6) is certainly not optimal, but this condition is in fact
quite mild (we need in any case the second moment to be locally bounded). The really
strong requirement above is the condition (2.3) on the noise. This assumption, together
with the product structure of the measure Q, summarize three properties at once:

(1) If Yt =
∫

z Qt(dz) denotes the conditional expectation of the observed value Zt at
time t, conditionally on F (0) (the σ-field generated by the latent process and all
possible covariates), then Y is a semimartingale.

(2) Moreover, we have Yt = Xt (unbiasedness).

(3) Finally, knowing F (0), the errors are independent at different times.

If (1) holds and (2) fails, our procedure provides an estimator for the integrated volatility
of Yt instead of Xt and, as explained in Li and Mykland (2007), it is probably impossible
to make inference on the process X itself, unless, of course, further specification of the
model is assumed. If (1) fails, our procedure just breaks down, and we doubt that there
might exist in general a method for retrieving the volatility of X (see Example 3 below).
As for (3), without any doubt it could be substantially weakened, to allow for some (weak
enough) dependency (cf. the discussion in Aı̈t-Sahalia et al. (2005b), but the independence
assumption simplifies things quite a lot !

Example 1) If Zn
i = Xn

i + εn
i , where the sequence (εn

i )i≥0 is i.i.d. centered with finite
8th moment and independent of X, then (K) is obviously satisfied. 2
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Example 2) Let Zn
i = γb(Xn

i + εn
i )/γc for some γ > 0 and (εn

i ) as in the previous
example. This amounts to having an additive i.i.d. noise and then taking the rounded-off
value with lag γ, for example γ = 1 cent. Then as soon as the εn

i are uniform over b0, γc, or
more generally uniform over [−2iγ, (2i + 1)γ] for some integer i, (K) is satisfied. Another
example of model involving rounding with (K) satisfied is given in model 2 of section 4.
If the εn

i have a C2 density, with further a finite 8th moment and a support containing
an interval of length γ, then (K) is not satisfied in general but the process Y introduced
above is of the form Y = f(X) for a C2 function f , and so everything goes through if we
replace X by Y below. 2

Example 3) Let Zn
i = γbXn

i /γc for some γ > 0 (“pure rounding”). Then the errors
Zn

i − Xn
i are independent, conditionally on X, but (K) is not satisfied, and the process

Y is not a semimartingale, and is not even càdlàg: so nothing of what follows applies. In
fact in this case, if we observe the whole process Zt = γbXt/γc over some interval [0, T ],
we can derive the local times Lx

t for t ∈ [0, T ] of the process X at each level x = iγ for
i ∈ Z, but nothing else, and in particular we cannot infer the values of the process Ct.

3 The results

We need first some notation. We choose a sequence kn of integers and a number θ ∈ (0,∞)
satisfying

kn

√
∆n = θ + o(∆1/4

n ) (3.1)

(for example kn = [θ/
√

∆n]). We also choose a function g on [0, 1], which satisfies

g is continuous, piecewise C1 with a piecewise Lipschitz derivative g′,
g(0) = g(1) = 0,

∫ 1
0 g(s)2ds > 0.

}
(3.2)

We associate with g the following numbers and functions on R+:

gn
i = g(i/kn), hn

i = gn
i+1 − gn

i , (3.3)

s ∈ [0, 1] 7→ φ1(s) =
∫ 1
s g′(u)g′(u− s) du, φ2(s) =

∫ 1
s g(u)g(u− s) du

s > 1 7→ φ1(s) = 0, φ2(s) = 0

i, j = 1, 2 ⇒ Φij =
∫ 1
0 φi(s)φj(s) ds, ψi = φi(0).





(3.4)

Next, with any process V = (Vt)t≥0 we associate the following random variables

V n
i = Vi∆n , ∆n

i V = V n
i − V n

i−1,

V
n
i =

∑kn−1
j=1 gn

j ∆n
i+jV = −∑kn−1

j=0 hn
j V n

i+j

}
(3.5)

(the two versions of V
n
i are identical because g(0) = g(1) = 0).

Recall that in our setting, we do not observe the process X, but the process Z only,
and at times i∆n. So our estimator should be based on the values Zn

i only, and we propose
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to take

Ĉn
t =

√
∆n

θψ2

[t/∆n]−kn+1∑

i=0

(Zn
i )2 − ψ1∆n

2θ2ψ2

[t/∆n]∑

i=1

(∆n
i Z)2. (3.6)

The last term above is here to remove the bias due to the noise, but apart from that it
plays no role in the central limit theorem given below.

As we will see, these estimators are asymptotically consistent and mixed normal, and
in order to use this asymptotic result we need an estimator for the asymptotic conditional
variance. Among many possible choices, here is an estimator:

Γn
t =

4Φ22

3θψ4
2

[t/∆n]−kn+1∑

i=0

(Zn
i )4

+
4∆n

θ3

(Φ12

ψ3
2

− Φ22ψ1

ψ4
2

) [t/∆n]−2kn+1∑

i=0

(Zn
i )2

i+2kn−1∑

j=i+kn

(∆n
j Z)2

+
∆n

θ3

(Φ11

ψ2
2

− 2
Φ12ψ1

ψ3
2

+
Φ22ψ

2
1

ψ4
2

) [t/∆n]−2∑

i=1

(∆n
i Z)2(∆n

i+2Z)2. (3.7)

Theorem 3.1 Assume (H) and (K). For any fixed t > 0 the sequence 1

∆
1/4
n

(Ĉn
t − Ct)

converges stably in law to a limiting variable defined on an extension of the original space,
and which is of the form

Yt =
∫ t

0
γs dBs, (3.8)

where B is a standard Wiener process independent of F and γt is the square-root of

γ2
t =

4
ψ2

2

(
Φ22θσ

4
t + 2Φ12

σ2
t αt

θ
+ Φ11

α2
t

θ3

)
. (3.9)

Moreover

Γn
t

P−→
∫ t

0
γ2

s ds, (3.10)

and therefore, for any t > 0, the sequence 1

∆
1/4
n

√
Γn

t

(Ĉn − C) converges stably in law to

an N (0, 1) variable, independent of F .

Example: The simplest function g is probably

g0(x) = x ∧ (1− x). (3.11)

In this case we have

ψ1 = 1, ψ2 =
1
12

, Φ11 =
1
6
, Φ12 =

1
96

, Φ22 =
151

80 640
(3.12)
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and also, with kn even, we have

Z
n
i =

1
kn

( kn−1∑

j=kn/2

Zn
i+j −

kn/2−1∑

j=0

Zn
i+j

)
. (3.13)

Remark 1: Our estimators are in fact essentially the same as the kernel estimators in
Barndorff-Nielsen et al. (2006). With our notation the “flat top” estimators of that paper
are

K
n
t =

[t/∆n]−kn+1∑

i=kn

(∆n
i Z)2+

∑

kn≤i≤[t/∆n]−kn+1, 1≤j≤kn

k
(j − 1

kn

)(
∆n

i Z ∆n
i+jZ+∆n

i Z ∆n
i−jZ

)
,

where k is some (smooth enough) weight function on [0, 1] having k(0) = 1 and k(1) = 0,
and also k′(0) = k′(1) = 0. Then we see that

Ĉn
t = K

n
t (1 + O(

√
∆n))− ψ1∆n

2θ2ψ2

[t/∆n]∑

i=1

(∆n
i Z)2 + border terms,

provided we take k(s) = φ2(s)/ψ2, so there is a one-to-one correspondence between the
weight functions g and k. The “border terms” are terms arising near 0 and t, because
the two sums in the definition of K

n
t do not involve exactly the same increments of Z.

These border terms turn out to be of order ∆1/4, the same order than Ĉn
t −Ct, although

they are asymptotically unbiased (but usually not asymptotically mixed normal). This
explains why our CLT is somehow simpler than the equivalent results in Barndorff-Nielsen
et al. (2006).

Remark 2: Suppose that Yt = σWt and that αt = α, where σ and α are positive
constants, and that t = 1. In this case there is an efficient parametric bound for the
asymptotic variance for estimating σ2 in presence of i.i.d. noise, which is 8σ3√α, see e.g.
Gloter and Jacod (2001). On the other hand, the concrete estimators given in Barndorff-
Nielsen et al. (2006) or Podolskij and Vetter (2006) or Zhang (2006), in the i.i.d. additive
noise case again, have an asymptotic variance ranging from 8.01 σ3√α (and even from the
optimal variance 8σ3√α in Barndorff-Nielsen et al. (2006), although in a slightly different
setting) to 26 σ3√α, upon using an “optimal” choice of θ in (3.1). To compare with these
results, here the “optimal” asymptotic variance in the simple case (3.11), obtained for
θ = 4.777

√
α /σ, is 8.545 σ3√α, quite close to the efficient bound. Note that other than

(3.11) and more appropriate choices of g would give lower asymptotic variances.

Remark 3: In practice, going down from 8.545 to 8 as in the previous remark is rather
irrelevant, in front of the fact that we do not know how to choose θ in an optimal way
(this is the drawback of all previously quoted papers as well, and especially for the efficient
estimator of Gloter and Jacod (2001)). More: since σ = σt and α = αt are usually random
and time dependent, there is no “optimal” choice of the number θ; one should rather take
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a θ = θt which is time-varying and data-dependent, and based on ”local” estimates of σt

and αt.

We have not pursued this matter in this paper. However, simple compromises can be
reached as follows: we usually have an idea of the “average” sizes αave and σave of αt

and σt: in this case one may take θ close to 4.8
√

αave/σave. Or, better, we can estimate∫ T
0 σ4

t dt,
∫ T
0 σ2

t αtdt and
∫ T
0 α2

t dt from the data (see the next remark for an estimator of the
first of these quantities, the two others can be similarly estimated using the convergence
(5.65) in the proof section. To get these estimates, one uses a preliminary value for θ).
Then we plug these estimators in equation (3.9). to get an efficient value of θ.

Remark 4: Note that a consistent estimator of the quarticity can be constructed using
a different linear combination of the three parts in (3.7). More specifically, we have

Q̂n
t =

1
3θ2ψ2

2

[t/∆n]−kn+1∑

i=0

(Zn
i )4

−∆nψ1

θ4ψ2
2

[t/∆n]−2kn+1∑

i=0

(Zn
i )2

i+2kn−1∑

j=i+kn

(∆n
j Z)2

+
∆nψ2

1

4θ4ψ2
2

[t/∆n]−2∑

i=1

(∆n
i Z)2(∆n

i+2Z)2.

P−→
∫ t

0
σ4

t dt; (3.14)

see section 5 for details.

Remark 5: Let us emphasize once more that, even though the structure of the noise
considered here is quite more general than in the existing literature, it still leaves out
the case where the noise is correlated, conditionally on X. It is likely that in the weakly
correlated case similar results (with different asymptotic variances) are true, but it would
seriously complicate the analysis.

Another point is worth mentioning: in contrast with some of the existing literature on
i.i.d. noise and most of the literature on rounding, we do not consider a noise level going
to 0 as the frequency increases. If it were the case, the same analysis would apply, but the
rate (and the choice of kn in (3.1), to begin with) would be different.

4 Simulation results

In this section, we examine the performance of our estimator.
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4.1 Simulation Design

We study the case when the weight function is taken to be g(x) = x∧ (1−x). We simulate
data for one day (t ∈ [0, 1]), and assume the data is observed once every second (n=23400).
The X processes and the market microstructure noise processes are generated from the
models below. 25000 iterations were run for each model. The parameter values are chosen
to be close to those used in Zhang et al. (2005).

The actual values of n will vary from stock to stock and day to day. To get an idea
of the range for commonly traded stock, we report some values in Table 1. Our choice to
use n=23400 is meant to represent a fairly heavily traded stock.

F MSFT INTC PFE
4/4/2005 4998 80984 91516 15378
4/5/2005 4938 88721 74355 29101
4/6/2005 4033 103899 76048 16723
4/7/2005 5405 100339 69563 36140
4/8/2005 6199 65909 73223 15407

Table 1. Sample size “n” for four selected stocks from the New York stock exchange:
Ford (F), Microsoft (MSFT), Intel (INTC), and Pfizer (PFE), and one week in April

2005.

Model 1 – the case of constant volatility & additive noise.

Xt = X0 + σWt, Zn
i = Xn

i + εn
i

Parameters used: σ = 0.2/
√

252, εn
i ∼ i.i.d. N (0, 0.00052).

The observed sample path looks as in Figure 1:
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Figure 1. One observed sample path generated by model 1.

Model 2 – the case of constant volatility & rounding plus error.

Xt = X0 + σWt, Zn
i = log(γbexp(Xn

i + εn
i )

γ
c)

where εn
i = ηn

i log
γd exp(Xn

i )

γ
e

exp(Xn
i ) and ηn

i is a Bernoulli variable (probabilities pn
i and 1− pn

i of

taking values 1 and 0), with pn
i = log

(
exp(Xn

i )

γb exp(Xn
i

)

γ
c

)
/ log

(
γd exp(Xn

i )

γ
e

γb exp(Xn
i

)

γ
c

)
.

This model is similar to the two-stage contamination model studied in Li and Myk-
land (2007), where the observed log prices Zn

i ’s are the logarithm of the rounded contam-
inated prices. Basically this model amounts to randomly assigning one of the two nearest
rounding grids of Xt to its corresponding observation (with probability pt the upper grid
log

(
γd exp(Xt)

γ e
)
, 1 − pt the lower grid log

(
γb exp(Xt)

γ c
)
). It’s easy to check that for this

model, the assumption (K) is satisfied.

Parameters used: σ = 0.2/
√

252, X0 = log(8), γ = 0.01. Note that the initial value
X0 is chosen so that the averaged size of error αave is close to that in the simulations of
model 1 and model 3.

The observed log price process looks like in Figure 2:

11
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Figure 2. One observed sample path generated by model 2.

Model 3 – the case of stochastic volatility & additive noise. The Heston model (Heston
(1993)) is used to generate the stochastic volatility process.

dXt = (µ− νt/2)dt + σtdBt, Zn
i = Xn

i + εn
i

and
dνt = κ(α− νt)dt + γν

1/2
t dWt,

where νt = σ2
t and we assume Corr(B,W ) = ρ.

Parameters used: µ = 0.05/252, κ = 5/252, α = 0.04/252, γ = 0.05/252, ρ = −0.5 and
εn
i ∼ i.i.d. N (0, 0.00052).

4.2 Simulation Results

Some initial simulations (not recorded here) showed that our estimator is fairly robust
to the choice of kn, in other words, it performs reasonably well for a large range of kn.
Since θ comes from asymptotic statistics, it doesn’t give precise instruction about kn for
small samples. On the other hand, when computing the true asymptotic variance

∫ t
0 γ2

sds,
the θ we should use is really kn

√
∆n. We decided to firstly fix kn to be close to the one

suggested by the optimal θ, and then re-define θ to be kn

√
∆n for further computations.

In all our simulations, we used kn = 51, which corresponds to a θ ≈ 1/3.

Table 2 reports the performance of the estimator Ĉn
t and the variance estimator Γn

t .
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Model 1 Model 2 Model 3
Relative small-sample bias

Avg[(Ĉn
t − C)/C]

-0.008759 -0.009784 -0.008463

Relative bias in the variance estimator
Avg[(Γn

t −
∫ t
0 γ2

sds)/
∫ t
0 γ2

sds]
-0.014182 -0.013898 -0.013085

Table 2. Relative bias in the estimators Ĉn
t and Γn

t , for the three models.

As we will see later, the results in Model 1, where Ĉn
t and Γn

t are essentially normal
distributed, show the importance of a correction of these estimators, when dealing with
small sample sizes. We propose to replace the parameters ψi and φij by their finite sample
analogues, which are defined as follows:

ψkn
1 = kn

kn∑

j=1

(gn
j+1 − gn

j )2, ψkn
2 =

1
kn

kn−1∑

j=1

(gn
j )2

φkn
1 (j) =

kn∑

j=i+1

(gn
i−1 − gn

i )(gn
i−j−1 − gn

i−j), φkn
2 (j) =

kn∑

j=i+1

gn
i gn

i−j

Φkn
11 = kn

( kn−1∑

j=0

(φkn
1 (j))2 − 1

2
(φkn

1 (0))2
)

Φkn
12 =

1
kn

( kn−1∑

j=0

φkn
1 (j)φkn

2 (j)− 1
2
φkn

1 (0)φkn
2 (0))

)

Φkn
22 =

1
k3

n

( kn−1∑

j=0

(φkn
2 (j))2 − 1

2
(φkn

2 (0))2
)

As it can be seen in the proof, these parameters are the ”correct” ones, but each of them
converges at a smaller order than n−

1
4 and can therefore be replaced in the central limit

theorem. Nevertheless, for small sizes of kn the difference between each of the parameters
and its limit turns out to be substantial. A second adjustment regards the sums appearing
in the estimators. The numbers of summands are implicitly assumed to be bt/∆nc rather
than bt/∆nc − kn + 2, say. This doesn’t matter in the limit, but it is reasonable to scale
each sum by bt/∆nc divided by the actual number of summands to obtain better results.
However, this adjustment is of minor importance. The last step is a finite sample bias
correction due to the fact that

∑bt/∆nc
i=1 (∆n

j X)2 converges to Ct. Therefore, the latter
term in Ĉn

t gives a small negative bias, which we dispose of by another scaling factor.
Summarized, the new statistics can be defined as follows:

Ĉn,adj
t = (1−ψkn

1 ∆n

2θ2ψkn
2

)−1
( bt/∆nc

√
∆n

(bt/∆nc − kn + 2)θψkn
2

bt/∆nc−kn+1∑

i=0

(Z̄n
i )2−ψkn

1 ∆n

2θ2ψkn
2

bt/∆nc∑

i=1

(∆n
j X)2

)

13



and

Γn,adj
t = (1− ψkn

1 ∆n

2θ2ψkn
2

)−2
( 4Φkn

22 bt/∆nc
3θ(ψkn

2 )4(bt/∆nc − kn + 2)

bt/∆nc−kn+1∑

i=0

(Z̄n
i )4

+
4∆n bt/∆nc

θ3
(
bt/∆nc − kn + 2)

(
Φkn

12

(ψkn
2 )3

− Φkn
22ψkn

1

(ψkn
2 )4

) bt/∆nc−kn+1∑

i=0

(Z̄n
i )2

i+2kn−1∑

j=i+kn

(∆n
j Z)2

+
∆n bt/∆nc

θ3(bt/∆nc − 2)

( Φkn
11

(ψkn
2 )2

− 2Φkn
12ψkn

1

(ψkn
2 )3

+
Φkn

22 (ψkn
1 )2

(ψkn
2 )4

) bt/∆nc−2∑

i=1

(∆n
i Z)2(∆n

i+2Z)2
)

Table 3 reports the performance of the adjusted estimator Ĉn,adj
t and the variance estima-

tor Γn,adj
t .

Model 1 Model 2 Model 3
Relative small-sample bias

Avg[(Ĉn,adj
t − C)/C]

-0.000292 -0.001169 0.000039

Relative bias in the variance estimator
Avg[(Γn,adj

t − ∫ t
0 γ2

sds)/
∫ t
0 γ2

sds]
0.000525 0.000904 0.001653

Table 3. Bias in the estimators Ĉn,adj
t and Γn,adj

t , for the three models.
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Figure 3. Histogram of Ĉn,adj
t , for Model 1.

We test the normality of the statistics Nn
t = Ĉn

t −C

∆
1/4
n

√
Γn

t

and Nn,adj
t = Ĉn,adj

t −C

∆
1/4
n

√
Γn,adj

t

, whose

quantiles are compared with the N (0, 1) quantiles:
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Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%
Model 1 Nn

t -0.22 1.04 1.26% 4.72% 8.32% 96.86% 98.56% 99.82%
Model 1 Nn,adj

t -0.05 1.02 0.82% 3.20% 6.08% 95.55% 97.94% 99.68%
Model 2 Nn

t -0.24 1.06 1.76% 5.03% 8.77% 96.92% 98.67% 99.93%
Model 2 Nn,adj

t -0.07 1.04 1.20% 3.66% 6.42% 95.73% 98.03% 99.85%
Model 3 Nn

t -0.21 1.05 1.32% 4.86% 8.41% 96.8% 98.66% 99.82%
Model 3 Nn,adj

t -0.05 1.03 0.84% 3.42% 6.24% 95.58% 97.99% 99.73%

Table 4. Comparisons of quantiles of Nn
t , Nn,adj

t with N (0, 1).
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Figure 4. Normal Q-Q plot of Nn,adj
t for Model 1.

One of the reasons that the above quantiles don’t look good enough is that there is a
(small) positive correlation between the estimator Ĉn

t and Γn
t . One can adjust this effect

by using a first order Taylor expansion of Γ: expanding Γn
t or Γn,adj

t around the theoretical
asymptotic variance Γ0 ( 1√

Γ0
≈ 1√

Γn
t

− Γ0−Γn
t

2Γ0
3/2 ):

N0n
t := Nn

t −
(Γ0 − Γn

t )(Ĉn
t − C)

2∆1/4
n Γ3/2

0

and

N0n,adj
t := Nn,adj

t − (Γ0 − Γn,adj
t )(Ĉn,adj

t − C)

2∆1/4
n Γ3/2

0

.

The quantiles of N0n
t and N0n,adj

t are compared with the N (0, 1) quantiles:
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Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%
Model 1 N0n

t -0.17 1.03 0.64% 3.27% 6.75% 95.75% 97.70% 99.47%
Model 1 N0n,adj

t -0.01 1.04 0.40% 2.21% 4.81% 94.26% 96.78% 99.16%
Model 2 N0n

t -0.19 1.04 1.00% 3.74% 7.10% 95.82% 97.70% 99.53%
Model 2 N0n,adj

t -0.02 1.05 0.63% 2.72% 5.07% 94.20% 96.74% 99.12%
Model 3 N0n

t -0.16 1.04 0.65% 3.50% 6.85% 95.71% 97.79% 99.53%
Model 3 N0n,adj

t 0.00084 1.05 0.38% 2.40% 4.94% 94.06% 96.76% 99.16%

Table 5. Comparisons of quantiles of N0n
t , N0n,adj

t with N (0, 1).
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Figure 5. Normal Q-Q plot of N0n,adj
t for Model 1.

We see from the above simulation results that our estimator works quite well for these
models. We note that our theoretical results do not require the often made assumption that
the rounding threshold go to zero, and this is reflected in the simulation when comparing
results of model 2 with those of model 1. Comparing results of model 3 with those of
model 1, we see that our approach works well for the stochastic volatility model.

5 The proof

To begin with, we introduce a strengthened version of our assumptions (H) and (K):

Assumption (L): We have (H) and (K), and further the processes b, σ,
∫

z8 Qt(dz) and
X itself are bounded (uniformly in (ω, t)) (then α is also bounded). 2

Then a standard localization procedure explained in details in Jacod (2008) for example

16



shows that for proving Theorem 3.1 it is no restriction to assume that (L) holds. Below,
we assume these stronger assumptions without further mention.

There are two separate parts in the proof. One consists in replacing in (3.6) the
observed process Z by the unobserved X, at the cost of additional terms which involve
the quadratic mean error process α of (2.5). The other part amounts to a central limit
theorem for the sums of the variables (Xn

i )2. This is not completely standard because
(Xn

i )2 and (Xn
j )2 are strongly dependent when |i − j| < kn, since they involve some

common variables Xn
l , whereas kn →∞. So for this we split the sum

∑[t/∆n]−kn+1
i=0 (Xn

i )2

into “big” blocks of length pkn, with p eventually going to ∞, separated by “small” blocks
of length kn, which are eventually negligible but ensure the conditional independence
between the big blocks which we need for the central limit theorem.

Obviously, this scheme asks for somehow involved notation, which we present all to-
gether in the next subsection.

5.1 Some notation.

First, K denotes a constant which changes from line to line and may depend on the bounds
of the various processes in (L), and also on supn k2

n∆n (recall (3.1)), and is written Kr if
it depends on an additional parameter r. We also write Ou(x) for a (possibly random)
quantity smaller than Kx for some constant K as above.

In the following, and unless otherwise stated, p ≥ 1 denotes an integer and q > 0 a
real. For each n we introduce the function

gn(s) =
kn−1∑

j=1

gn
j 1((j−1)∆n,j∆n](s), (5.1)

which vanishes for s > (kn − 1)∆n and s ≤ 0 and is bounded uniformly in n. We then
introduce the processes

X(n, s)t =
∫ t
0 bugn(u− s)du +

∫ t
0 σugn(u− s)dWu

C(n, s)t =
∫ t
0 σ2

u gn(u− s)2 du.

}
(5.2)

These processes vanish for t ≤ s, and are constant in time for t ≥ s + (kn − 1)∆n, and

X
n
i = X(n, i∆n)(i+kn)∆n

, cn
i :=

kn−1∑

j=1

(gn
j )2∆n

i+jC = C(n, i∆n)(i+kn)∆n
. (5.3)

Next, we set

An
i,j =

i∧j+kn−1∑

m=i∨j

hn
m−i h

n
m−j αn

m, An
i = An

i,i =
kn−1∑

m=0

(hn
m)2αn

i+m. (5.4)

Z̃ ′ni = (Zn
i )2 −An

i − cn
i , ζ(Z, p)n

i =
i+pkn−1∑

j=i

Z̃ ′nj , (5.5)
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ζ(X, p)n
i =

i+pkn−1∑

j=i

(
(Xn

j )2 − cn
j

)
, ζ(W,p)n

i =
i+pkn−1∑

j=i

(
(σn

i W
n
j )2 − cn

j

)
, (5.6)

(note the differences in the definition of ζ(V, p)n
i when V = Z or V = X or V = W ).

Moreover for any process V we set

ζ ′(V, p)n
i =

∑

(j,m): i≤j<m≤i+pkn−1

V
n
j V

n
m φ1

(m− j

kn

)
, (5.7)

ζ ′′(V )n
i = (V n

i )2
i+2kn−1∑

j=i+kn

(∆n
j V )2. (5.8)

Next we consider the discrete time filtrations Fn
j = F (0)

j∆n
⊗F (1)

j∆n− (that is, generated by

all F (0)
j∆n

-measurable variables plus all variables Zs for s < j∆n and F ′nj = F (0) ⊗ F (1)
j∆n−

and G(p)n
j = Fn

j(p+1)kn
and G′(p)n

j = Fn
j(p+1)kn+pkn

, for j ∈ N, and we introduce the
variables

η(p)n
j =

√
∆n

θψ2
ζ(Z, p)n

j(p+1)kn
, η(p)n

j = E(η(p)n
j | G(p)n

j )

η′(p)n
j =

√
∆n

θψ2
ζ(Z, 1)n

j(p+1)kn+pkn
, η′(p)n

j = E(η′(p)n
j | G′(p)n

j ).



 (5.9)

Then jn(p, t) =
[

t+∆n
(p+1)kn∆n

]
− 1 is the maximal number of pairs of “blocks” of respective

sizes pkn and kn that can be accommodated without using data after time t, and we set

F (p)n
t =

∑jn(p,t)
j=0 η(p)n

j , M(p)n
t =

∑jn(p,t)
j=0 (η(p)n

j − η(p)n
j )

F ′(p)n
t =

∑jn(p,t)
j=0 η′(p)n

j , M ′(p)n
t =

∑jn(p,t)
j=0 (η′(p)n

j − η′(p)n
j ),



 (5.10)

With the notation in(p, t) = (jn(p, t)+1)(p+1)kn, we also have three “residual” processes:

Ĉ(p)n
t =

√
∆n

θψ2

[t/∆n]−kn+1∑

i=in(p,t)

Z̃ ′ni , (5.11)

Ĉ ′(p)n
t =

√
∆n

θψ2

[t/∆n]−kn+1∑

i=0

An
i −

ψ1∆n

2θ2ψ2

[t/∆n]∑

i=1

(∆n
i Z)2, (5.12)

Ĉ ′′n
t =

√
∆n

θψ2

[t/∆n]−kn+1∑

i=0

cn
i − Ct. (5.13)

The key point of all this notation is the following identity, valid for all p ≥ 1:

Ĉn
t − Ct = M(p)n

t + M ′(p)n
t + F (p)n

t + F ′(p)n
t + Ĉ(p)n

t + Ĉ ′(p)n
t + Ĉ ′′n

t . (5.14)
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We end this subsection with some miscellaneous notation:

β(p)n
i = sups,t∈[i∆n,(i+(p+2)kn)∆n]

(
|bs − bt|+ |σs − σt|+ |αs − αt|

)

χ(p)n
i = ∆1/4

n +
√
E((β(p)n

i )2 | Fn
i ).



 (5.15)

Ξij = −
∫ 1

0
sφi(s)φj(s) ds. (5.16)

5.2 Estimates for the Wiener process.

This subsection is devoted to proving the following result about the Wiener process:

Lemma 5.1 We have

E((ζ(W,p)n
i )2 | Fn

i ) = 4(pΦ22 + Ξ22) k4
n∆2

n(σn
i )4 + Ou(p2χ(p)n

i ), (5.17)

E
(
ζ ′(W,p)n

i | Fn
i

)
= (pΦ12 + Ξ12)k3

n∆n + Ou(p∆−1/4
n ). (5.18)

Proof. 1) Since g(0) = g(1) = 0 we have
∫ 1
0 g′(s)ds = 0. We introduce the process

Ut = −
∫ 1

0
g′(s)Wt+sds = −

∫ t+1

t
g′(s− t)Wsds = −

∫ 1

0
g′(s)(Wt+s −Wt)ds, (5.19)

which is stationary centered Gaussian with covariance E(UtUt+s) = φ2(s), as given by
(3.4). The scaling property of W and (3.5) and g(0) = g(1) = 0 imply that

(
W

n
i

)
i≥1

L=


−

√
kn∆n

kn−1∑

j=0

(
g
(j + 1

kn

)
− g

( j

kn

))
W(i+j)/kn




i≥1

.

Then (3.2) and the fact that E(supu∈[0,s] |Wt+u−Wt|q) ≤ Kqs
q/2, plus a standard approx-

imation of an integral by Riemann sums, yield

(
W

n
i

)
i≥1

L=
(√

kn∆n Ui/kn
+ Rn

i

)
j≥0

, E(|Rn
i |q) ≤ Kq∆q/2

n . (5.20)

where the last estimate holds for all q > 0. Then in view of (3.1) we get for j ≥ i:

E
(
W

n
i W

n
j | Fn

i

)
= kn∆nφ2

(
j−i
kn

)
+ Ou(∆3/4

n )

E
(
(Wn

i )4 | Fn
i

)
= 3k2

n∆2
nψ2

2 + Ou(∆5/4
n ).



 (5.21)

At this stage, (5.18) is obvious.

2) We have

(ζ(W,p)n
i )2 = (σn

i )4Vn(i, p)2 + V ′
n(i, p)2 − 2(σn

i )2Vn(i, p)V ′
n(i, p), (5.22)
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where

Vn(i, p) =
i+pkn−1∑

j=i

(Wn
j )2, V ′

n(i, p) =
i+pkn−1∑

j=i

cn
j .

On the one hand, we deduce from (5.3) that if i ≤ j ≤ i + (p + 1)kn,

cn
j = ψ2kn∆n(σn

i )2 + Ou(∆n +
√

∆n β(p)n
i ). (5.23)

Then obviously

V ′
n(i, p) = ψ2(σn

i )2pk2
n∆n + Ou(p

√
∆n + p β(p)n

i ). (5.24)

On the other hand, another application of (5.20) and of the approximation of an
integral by Riemann sums, plus the fact that E(supu∈[0,s] |Ut+u−Ut|q) ≤ Kqs

q (this easily
follows from (5.19)), yield for any p ≥ 1:

Vn(i, p) L= k2
n∆n

∫ p

0
(Us)2ds + R(p)n

i , E(|R(p)n
i |q) ≤ Kqp

q∆q/4
n . (5.25)

Since E(UtUt+s) = φ2(s), that for p ≥ 2 the variable Up =
∫ p
0 (Us)2ds satisfies

E(Up) = pψ2, E(U2
p) = p2ψ2

2 + 4pΦ22 + 4Ξ22.

Then (5.25) yields

E(Vn(i, p) | Fn
i ) = pk2

n∆nψ2 + Ou(p∆1/4
n )

E(Vn(i, p)2 | Fn
i ) = (p2ψ2

2 + 4pΦ22 + 4Ξ22) k4
n∆2

n + Ou(p2∆1/4
n ).



 (5.26)

Combining (5.24) and (5.26) with (5.22), we immediately get (5.17). 2

5.3 Estimates for the process X.

Here we give estimates on the process X. The assumption (L) implies that for all s, t ≥ 0
and q > 0,

E
(
supu,v∈[t,t+s] |Xu −Xv|q | Ft

)
≤ Kq sq/2

∣∣∣E(Xt+s −Xt | Ft)
∣∣∣ ≤ Ks.



 (5.27)

Then, since |hn
j | ≤ K/kn and

∑kn−1
j=0 hn

j = 0 for the second inequality below, we have

E
(
|∆n

i+1X|q | Fn
i

)
≤ Kq∆q/2

n , E
(
|Xn

i |q | Fn
i

)
≤ Kq∆q/4

n . (5.28)

An elementary consequence is the following set of inequalities (use also |cn
i | ≤ K

√
∆n for

the first one):

E
(
(ζ(X, p)n

i )4 | Fn
i

)
≤ Kp, E

(
ζ ′′(X)n

i | Fn
i

)
≤ K∆n. (5.29)
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Here and below, as mentioned before, the constant Kp depends on p, and it typically goes
to ∞ as p → ∞ (in this particular instance, we have Kp = Kp4); what is important is
that it does not depend on n, nor on i.

(5.29) is not enough, and we need more precise estimates on ζ(X, p)n
i and ζ ′(X, p)n

i ,
given in the following two lemmas.

Lemma 5.2 We have
∣∣∣E(ζ(X, p)n

i | Fn
i )

∣∣∣ ≤ Kp∆1/4
n χ(p)n

i . (5.30)

Proof. Observe that, similar to (5.27),

E
(

sup
t≥0

|X(n, s)t|q | Fs

)
≤ Kq∆q/4

n ,
∣∣∣E(X(n, s)t | Fs)

∣∣∣ ≤ K
√

∆n. (5.31)

Let us define the processes

M(n, s)t = 2
∫ t
0 X(n, s)u σu gn(u− s) dWu,

B(n, s)t = 2
∫ t
0 X(n, s)u bu gn(u− s)du.

}

Then M(n, s) is a martingale, and by Itô’s formula X(n, s)2 = B(n, s)+C(n, s)+M(n, s).
Hence, since E(χ(1)n

j | Fn
i ) ≤ χ(p)n

i when i ≤ j ≤ i + (p + 1)kn, (5.30) is implied by
∣∣∣E(B(n, j∆n)(i+kn)∆n

| Fn
j )

∣∣∣ ≤ K∆3/4
n χ(1)n

j .

For this we write B(n, i∆n)(i+kn)∆n
= Un + Vn, where

Un = bn
j

∫ (j+kn)∆n

j∆n

X(n, j∆n)u gn(u− j∆n) du,

Vn =
∫ (j+kn)∆n

j∆n

X(n, j∆n)u (bu − bn
j ) gn(u− i∆n) du.

On the one hand, the second part of (5.31) yields that
∣∣∣E(Un | Fn

j )
∣∣∣ ≤ K∆n ≤ K∆3/4

n χ(p)n
j .

On the other hand, we have |Vn| ≤ K
√

∆n β(1)n
i supt≥0 |X(n, j∆n)t|, hence the first part

of (5.31) and Cauchy-Schwarz inequality yield E(|Vn| | Fn
j ) ≤ K∆3/4

n χ(1)n
j , and the result

follows. 2

Lemma 5.3 We have
∣∣∣E

(
(ζ(X, p)n

i )2 | Fn
i

)
− 4(pΦ22 + Ξ22) k4

n∆2
n(σn

i )4
∣∣∣ ≤ Kpχ(p)n

i∣∣∣E
(
ζ ′(p,X)n

i | Fn
i

)
− (pΦ12 + Ξ12)k3

n∆n(σn
i )2

∣∣∣ ≤ Kp∆
−1/2
n χ(p)n

i ).



 (5.32)
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Proof. The method is rather different from the previous lemma, and based upon the
property that for i∆n ≤ t ≤ s ≤ (i + (p + 2)kn)∆n we have

E
(

sup
u,v∈[t,t+s]

∣∣∣Xu −Xv − σt(Wu −Wv)
∣∣∣
q
| Fn

i

)
≤ Kp,qs

q/2
(
sq/2 + E((β(p)n

i )q | Fn
i )

)
.

We deduce that for i ≤ j, l ≤ i + (p + 2)kn we have

E
(∣∣∣Xn

j −Xn
l − σt(Wn

j −Wn
l )

∣∣∣
q
| Fn

i

)
≤ Kp,q ∆q/4

n

(
∆q/4

n + E((β(p)n
i )q | Fn

i )
)
. (5.33)

Now, V
n
j =

∑kn−1
l=0 hn

l (V n
j+l− V n

j ) and |hn
j | ≤ K/kn, by using Hölder inequality and (5.28)

we get for s a positive integer

E
(∣∣∣(Xn

j )s − (σn
i W

n
j )s

∣∣∣
q
| Fn

i

)
≤ Kp,q,s ∆sq/4

n

(
∆q/4

n + E((β(p)n
i )q | Fn

i )
)
. (5.34)

By (5.7), this for s = 1 and q = 2, plus (5.28) and Cauchy-Schwarz inequality, yield

E
(∣∣∣ζ ′(X, p)n

i − (σn
i )2ζ ′(W,p)n

i

∣∣∣ | Fn
i

)
≤ Kp ∆−1/2

n χ(p)n
i .

In a similar way, and in view of (5.6), we apply (5.34) with s = 2 and q = 2 to get

E
(∣∣∣ζ(X, p)n

i − ζ(W,p)n
i

∣∣∣
2
| Fn

i

)
≤ Kp (χ(p)n

i )2, (5.35)

which yields (use (5.29) and Cauchy-Schwarz inequality):

E
(∣∣∣(ζ(X, p)n

i )2 − (ζ(W,p)n
i )2

∣∣∣ | Fn
i

)
≤ Kp χ(p)n

i .

At this stage, the result readily follows from Lemma 5.1. 2

5.4 Estimates for the process Z.

Now we turn to the observed process Z, and relate the moments of the variables Z
n
j ,

conditional on F (0), with the corresponding powers of X
n
j . To begin with, and since

|hn
j | ≤ K/kn and α is bounded, and by the rate of approximation of the integral of a

piecewise Lipschitz function by Riemann sums, the following properties are obvious:

|An
i,j | ≤ K

√
∆n

|j − i| ≥ kn ⇒ An
i,j = 0

i ≤ j ≤ m ≤ i + (p + 1)kn ⇒
An

j,m = αn
i

1
kn

φ1

(
m−j
kn

)
+ Ou(p∆n +

√
∆n β(p)n

i )
∑

(j,m): i≤j<m≤i+pkn−1(A
n
j,m)2 = (αn

i )2(pΦ11 + Ξ11) + Ou

(
p3
√

∆n + pβ(p)n
i

)
.





(5.36)

Next, we give estimates for the F (0)-conditional expectations of various functions of Z.
Because of the F (0)-conditional independence of the variables Zt −Xt for different values
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of t, and because of (2.3), the conditional expectation E((Zt−Xt)(Zs−Xs) | F (0)⊗F (1)
s− )

vanishes if s < t and equals αt if s = t. Then, recalling (2.5) and (5.4),

E
(
Z

n
i −X

n
i | F ′ni

)
= 0

E
(
(Zn

i −X
n
i )(Zn

j −X
n
j ) | F ′ni∧j

)
= An

i,j .



 (5.37)

More generally, E
(
Πq

m=1h
n
jm

(Zn
i+jm

−Xn
i+jm

) | Fn
i+j1

)
= 0 as soon as there is one jm which

is different from all the others, and moreover |hn
j | ≤ K

√
∆n, whereas the moments (2.6)

are bounded for q ≤ 8. Then if we write (Zn
i −X

n
i )q as the sum of Πq

m=1h
n
jm

(Zn
i+jm

−Xn
i+jm

)
over all choices of integers jl between 0 and kn − 1, we see that for r, q integers we have

E
(
(Zn

i −X
n
i )q(Zn

j−X
n
j )r | F ′ni∧j

)
=





Ou(∆n) if q + r = 3
An

i An
j + 2(An

i,j)
2 + Ou(∆3/2

n ) if q = r = 2
Ou(∆2

n) if q + r = 8.

(5.38)

Now, if we expand the first members of (5.38), and in view of (5.36) and (5.5) and of
|cn

i | ≤ K
√

∆n, we deduce from (5.37) and (5.38) that for j ≥ i:

E
(
Z̃ ′ni | F ′ni

)
= (Xn

i )2 − cn
i , E

(
|Z̃ ′ni | | F ′ni

)
= (Xn

i )2 + Ou(
√

∆n)

E
(
Z̃ ′ni Z̃ ′nj | F (0)

)
= ((Xn

i )2 − cn
i )((Xn

j )2 − cn
j ) + 4X

n
i X

n
j An

i,j + 2(An
i,j)

2

+Ou

(
∆3/2

n + ∆n|Xn
i |+ ∆n|Xn

j |
)

E
(
(Z̃ ′ni )4 | Fn

i

)
≤ K(∆2

n + |Xn
i |8),





(5.39)

Then obviously this, combined with (5.28) and (5.30), yields

E(ζ(Z, p)n
i | F ′ni ) = ζ(X, p)n

i

E((ζ(Z, p)n
i )4 | Fn

i ) ≤ Kp∣∣∣E(ζ(Z, p)n
i | F ′ni )

∣∣∣ ≤ Kp∆
1/4
n χ(p)n

i .





(5.40)

and also, in view of (5.36),

E((ζ(Z, p)n
i )2 | F ′ni ) = (ζ(X, p)n

i )2 +
8
kn

αn
i ζ ′(X, p)n

i + 4(αn
i )2(pΦ11 + Ξ11)

+p3Ou

((√
∆n + β(p)n

i

)(
1 +

i+pkn−1∑

j=i

|Xn
j |2

))
.

Then, using (5.28) again and (5.32) and Hölder inequality, we get
∣∣∣E((ζ(Z, p)n

i )2 | Fn
i )− 4(pΦ22 + Ξ22)k4

n∆2
n(σn

i )4

−8αn
i (σn

i )2(pΦ12 + Ξ12)k2
n∆n − 4(αn

i )2(pΦ11 + Ξ11)
∣∣∣ ≤ Kp χ(p)n

i . (5.41)
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We need some other estimates. Exactly as for (5.39) one sees that

E
(
(Zn

i )4 | F ′ni
)

= (Xn
i )4 + 6(Xn

i )2An
i + 3(An

i )2 + Ou

(
∆3/2

n + ∆n|Xn
i |

)

E
(
(Zn

i )8 | F ′ni
)
≤ K(∆2

n + |Xn
i |8)



 (5.42)

and (using the boundedness of X)

E
(
ζ ′′(Z)n

i | F ′ni
)

= ζ ′′(X)n
i + An

i

∑i+2kn
j=i+kn+1(∆

n
j X)2

+((Xn
i )2 + An

i )
∑i+2kn

j=i+kn+1(α
n
j−1 + αn

j ),

E
(
(ζ ′′(Z)n

i )2 | F ′ni
)

≤ K.





(5.43)

Therefore, using (5.28), (5.29), (5.36), (5.21), and (5.34) with s = 2, we obtain
∣∣∣E((Zn

i )4 | Fn
i )− 3k2

n∆2
nψ2

2(σ
n
i )4 − 6∆n(σn

i )2αn
i ψ1ψ2 − 3

k2
n

(αn
i )2ψ2

1

∣∣∣ ≤ K∆nχ(1)n
i (5.44)

∣∣∣E(ζ ′′(Z)n
i | Fn

i )− 2αn
i (ψ1α

n
i + ψ2k

2
n∆n(σn

i )2αn
i )

∣∣∣ ≤ Kχ(1)n
i . (5.45)

Finally, the following is obtained in the same way, but it is much simpler:

E((∆n
i+1Z)2 | F ′ni ) = (∆n

i+1X)2 + αn
i + αn

i+1∣∣∣E((∆n
i+1Z)2(∆n

i+3Z)2 | Fn
i )− 4(αn

i )2
∣∣∣ ≤ Kχ(1)n

i

E((∆n
i+1Z)4(∆n

i+3Z)4 | Fn
i ) ≤ K.





(5.46)

5.5 Proof of the theorem.

We begin the proof of Theorem 3.1 with an auxiliary technical result.

Lemma 5.4 For any p ≥ 1 we have

E
(√

∆n
∑jn(p,t)

j=0

√
E((β(p)n

j(p+1)kn
)2 | Fn

j(p+1)kn
)
)
→ 0

E
(√

∆n
∑jn(p,t)

j=0 (β(p)n
j(p+1)kn

)2
)
→ 0.



 (5.47)

Proof. We have jn(p, t) ≤ Kpt/
√

∆n. Then the first expression in (5.47) is smaller than
a constant times the square-root of the second expression, and thus for (5.47) it suffices
to prove that

E
(√

∆n

jn(p,t)∑

j=0

(β(p)n
j(p+1)kn

)2
)
→ 0. (5.48)

Let ε > 0 and denote by N(ε)t the number of jumps of any of the three processes b, σ or
α, with size bigger than ε, over the interval [0, t], and set ρ(ε, t, η) to be the supremum of
|bs − br| + |σs − σr| + |αs − αr| over all pairs (s, r) such that s ≤ r ≤ s + η ≤ t and such
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that the interval (s, r] contains no jump of b, σ or α of size bigger than ε. Then obviously,
since all three processes b, σ, α are bounded,

√
∆n

jn(p,t)∑

j=0

(β(p)n
j(p+1)kn

)2 ≤
(
KN(ε)t

√
∆n

)
∧ (Kpt) + Kp t ρ(ε, t, (p + 1)kn∆n)2.

Moreover lim supη→0 ρ(ε, t, η) ≤ 3ε. Then Fatou’s lemma yields that the lim sup of the
left side of (5.48) is smaller than Kptε

2, and the result follows. 2

The proof of the first part of the theorem is based on the identity (5.14), valid for all
integers p ≥ 1. The right side of this decomposition contains two “main” terms M(p)n

t

and M ′(p)n
t , and all others are taken care of in Lemmas 5.5 and 5.6 below:

Lemma 5.5 For any fixed p ≥ 1 we have:

∆−1/4
n F (p)n

t
P−→ 0 (5.49)

∆−1/4
n F ′(p)n

t
P−→ 0 (5.50)

∆−1/4
n Ĉ(p)n

t
P−→ 0 (5.51)

∆−1/4
n Ĉ ′′n

t
P−→ 0. (5.52)

Proof. In view of (5.9) and (5.10), the proof of both (5.49) and (5.50) is a trivial
consequence of (5.40) and of Lemmas 5.2 and 5.4. Since the right side of (5.11) contains
at most Kp/

√
∆n summands, each one having expectation less than K∆1/2

n by the last
part of (5.39) and (5.28), we immediately get (5.51).

In view of (5.3), and with the notation an =
∑kn−1

j=1 (gn
j )2, we see that

[t/∆n]−kn+1∑

i=0

cn
i =

[t/∆n]−kn+1∑

i=0

i+kn−1∑

l=i+1

(gn
l−i)

2∆n
l C

=
[t/∆n]∑

l=1

∆n
l C

l∧(kn−1)∑

j=1∨(l+kn−1−[t/∆n])

(gn
j )2 = an

[t/∆n]−kn+2∑

l=kn−1

∆n
l C + Ou(1).

It follows that Ĉ ′n
t =

(√
∆n

θψ2
an − 1

)
+ Ou(

√
∆n). Since by Riemann approximation we

have an = knψ2 + Ou(1), we readily deduce (5.52) from (3.1). 2

Lemma 5.6 For any fixed p ≥ 1 we have ∆−1/4
n Ĉ ′(p)n

t
P−→ 0.

Proof. Let ζn
i = (∆n

i Z)2−(αn
i−1+αn

i ). We get by (5.28) and (5.46), and for 1 ≤ i ≤ j−2:

E(ζn
i ) = E((∆n

i X)2) = Ou(∆n), E(ζn
i ζn

j ) = E((∆n
i X)2(∆n

j X)2) = Ou(∆2
n),

25



and also E(|ζn
i |2) ≤ K. Then obviously E

(( ∑[t/∆n]
i=1 ζn

i

)2)
≤ K/∆n, and it follows that

Gn :=
ψ1∆

3/4
n

2θ2ψ2

[t/∆n]∑

i=1

ζn
i

P−→ 0.

It is then enough to prove that 1

∆
1/4
n

Ĉ ′(p)n
t +Gn

P−→ 0. Observe that by an elementary

calculation, 1

∆
1/4
n

Ĉ ′(p)n
t + Gn = Un + Vn, where

Un =

(
∆1/4

n

θψ2

( kn−1∑

l=0

(hn
l )2

)
− ψ1∆

3/4
n

θ2ψ2

) ( in(p,t)−1∑

i=kn

αn
i

)
,

Vn =
∆1/4

n

θψ2




kn−1∑

i=0

αn
i

i∑

l=0

(hn
l )2 +

in(p,t)+kn−2∑

i=in(p,t)

αn
i

kn−1∑

l=i+1−in(p,t)

(hn
l )2




−ψ1∆
3/4
n

2θ2ψ2


αn

0 + 2
kn−1∑

i=1

αn
i + 2

[t/∆n]−1∑

i=in(p,t)

αn
i + αn

[t/∆n]


 .

On the one hand, since αt is bounded and |hn
l | ≤ K

√
∆n it is obvious that |Vn| ≤

K∆1/4
n . On the other hand,

∑kn−1
l=0 (hn

l )2 = ψ1

kn
+O(∆n), whereas

∑in(p,t)−1
i=kn

αn
i ≤ K/∆n,

so by (3.1)), we see that Un → 0 pointwise. Then it finishes the proof. 2

Now we study the main terms M(p)n
t and M ′(p)n

t in (5.14). Those terms are (dis-
cretised) sums of martingale differences (note that η(p)n

j and η′(p)n
j ) are measurable with

respect to G(p)n
j+1 and G′(p)n

j+1 respectively).

By Doob’s inequality we have

E
(

sup
s≤t

|M ′(p)n
s |2

)
≤ 4

jn(p,t)∑

j=0

E(|η′(p)n
j |2).

Now, (5.41) for p = 1 and the boundedness of χ(1)n
i imply E(|η′(p)n

j |2) ≤ K∆n, and thus
(recall jn(p, t) ≤ Kt/p

√
∆n):

E
(

sup
s≤t

|M ′(p)n
s |2

)
≤ Kt

p

√
∆n. (5.53)

Lemma 5.7 For any fixed p ≥ 2, the sequence 1

∆
1/4
n

M(p)n of processes converges stably
in law to

Y (p)t =
∫ t

0
γ(p)sdBs, (5.54)
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where B is like in Theorem 3.1 and γ(p)t is the square root of

γ(p)2t =
4
ψ2

2

(( p

p + 1
Φ22 +

1
p + 1

Ψ22

)
θσ4

t + 2
( p

p + 1
Φ12 +

1
p + 1

Ψ12

)σ2
t αt

θ

+
( p

p + 1
Φ11 +

1
p + 1

Ψ11

)α2
t

θ3

)
(5.55)

Proof. 1) In view of a standard limit theorem for triangular arrays of martingale differ-
ences, it suffices to prove the following three convergences:

1√
∆n

jn(p,t)∑

j=0

(
E((η(p)n

j )2 | G(p)n
j )− (η(p)n

j )2
) P−→

∫ t

0
γ(p)2s ds, (5.56)

1
∆n

jn(p,t)∑

j=0

E((η(p)n
j )4 | G(p)n

j ) P−→ 0, (5.57)

1

∆1/4
n

jn(p,t)∑

j=0

E(η(p)n
j ∆(N, p)n

j | G(p)n
j ) P−→ 0, (5.58)

where ∆(V, p)n
j = Vj(p+1)kn∆n

−V(j−1)(p+2)kn∆n
for any process V , and where (5.58) should

hold for all bounded martingales N which are orthogonal to W , and also for N = W . The
last property is as stated as in Jacod and Shiryaev (2003). However, a look at the proof
in Jacod and Shiryaev (2003) shows that it is enough to have it for N = W , and for all N
in a set N of bounded martingales which are orthogonal to W and such that the family
(N∞ : N ∈ N ) is total in the space L1(Ω,F ,P). A suitable such set N will be described
later.

2) Since jn(p, t) ≤ Kt/p
√

∆n, (5.57) trivially follows from (5.40), whereas (5.56) is an
immediate consequence of (5.41) and of a Riemann sums argument.

3) The proof of (5.58) is much more involved, and we begin by proving that

∆1/4
n

jn(p,t)∑

j=0

an
j

P−→ 0, where an
j = E(ζ(W,p)n

j(p+1)kn
∆(N, p)n

j | G(p)n
j ). (5.59)

We have ζ(W,p)n
i = (σn

i )2Vn(i, p)− V ′
n(i, p) (see after (5.22)), and we set

δn
j = E(Vn(j(p + 1)kn, p) ∆(N, p)n

j | G(p)n
j ),

δ′nj = E(V ′
n(j(p + 1)kn, p) ∆(N, p)n

j | G(p)n
j ).

When N = W , the variable δn
j is the Fj(p+1)kn∆n

-conditional expectation of an odd
function of the increments of the process W after time j(p + 2)kn∆n, hence it vanishes.
Suppose now that N is a bounded martingale, orthogonal to W . By Itô’s formula we
see that (Wn

j )2 is the sum of a constant (depending on n) and of a martingale which is
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a stochastic integral with respect to W , on the interval [j∆n, (j + kn)∆n]. Hence δn
j is

the sum of a constant plus a martingale which is a stochastic integral with respect to W ,
on the interval [j(p + 1)kn∆n, (j + 1)(p + 1)kn∆n]. Then the orthogonality of N and W
implies δn

j = 0 again. Hence in both cases we have δn
j = 0.

Since an
j = (σn

j(p+1)kn
)2δn

i − δ′ni , (5.59) will follow if we prove

∆1/4
n

jn(p,t)∑

j=0

|δ′nj | P−→ 0. (5.60)

For this we use (5.23). Since N is a martingale, we deduce (using Cauchy-Schwarz in-
equality) that

|δ′nj | ≤ Kp χ(p)n
j(p+1)kn

√
E(∆(F, p)n

j | G(p)n
j ), (5.61)

where F = 〈N, N〉 (the predictable bracket of N). Then the expected value of the left
side of (5.60) is smaller than the square-root of

E(Ft) E
(√

∆n

jn(p,t)∑

j=0

E((β(p)n
j(p+1)kn

)2
)
,

and we conclude by Lemma 5.4.

4) In this step we prove that

∆1/4
n

jn(p,t)∑

j=0

a′nj
P−→ 0, where a′nj = E(ζ(X, p)n

j(p+2)kn
∆(N, p)n

j | G(p)n
j ). (5.62)

Then by Cauchy-Schwarz inequality and (5.35) we see that |a′nj − an
j | satisfies the same

estimate than |δ′nj | in (5.61). Hence we deduce (5.62) from (5.59) like in the previous step.

5) It remains to deduce (5.58) from (5.62), and for this we have to specify the set N .
This set N is the union of N 0 and N 1, where N 0 is the set of all bounded martingales
on (Ω(0),F (0), (F (0)

t ),P(0)), orthogonal to W , and N 1 is the set of all martingales having
N∞ = f(Zt1 , · · · , Ztq), where f is any Borel bounded on Rq and t1 < · · · < tq and q ≥ 1.

When N is either W or is in N 0, then by (5.40) the left sides of (5.58) and of (5.62)
agree, so in this case (5.58) holds. Next, suppose that N is in N 1, associated with the
integer q and the function f as above. In view of (2.4) it is easy to check that N takes the
following form (by convention t0 = 0 and tq+1 = ∞):

tl ≤ t < tl+1 ⇒ Nt = M(l;Zt1 , · · · , Ztl)t

for l = 0, · · · , q, and where M(l; z1, · · · , zl) is a version of the martingale

M(l; z1, · · · , zl)t = E(0)
( ∫ q∏

r=l+1

Qtr(dzr)f(z1, · · · , zl, zl+1, · · · , zq) | F (0)
t )
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(with obvious conventions when l = 0 and l = q), which is measurable in (z1, · · · , zl, ω
(0)).

Then
E((ζ(Z, p)j(p+1)kn

− ζ(X, p)j(p+1)kn
) ∆(N, p)n

j | G(p)n
j )) = 0 (5.63)

by (5.40) when the interval (j(p + 1)kn∆n, (j(p + 1) + 1)kn∆n] contains no point tl. Fur-
thermore, the left side of (5.63) is always smaller in absolute value than Kp (use (5.29) and
(5.40) and the boundedness of N). Since we have only q intervals (j(p + 2)kn∆n, (j(p +
1) + 2)kn∆n] containing points tl, at most, we deduce from this fact and from (5.63) that

∣∣∣ θψ2

∆1/4
n

jn(p,t)∑

j=0

E(η(p)n
j ∆(N, p)n

j | G(p)n
j )−∆1/4

n

jn(p,t)∑

j=0

a′nj
∣∣∣ ≤ qKp∆1/4

n ,

and (5.58) readily follows from (5.62). 2

Now we can proceed to the proof of the first claim of Theorem 3.1. We have

1

∆1/4
n

(Ĉn
t − Ct) =

1

∆1/4
n

M(p)n
t + V (p)n

t ,

where

V (p)n
t =

1

∆1/4
n

(
M ′(p)n

t + F (p)n
t + F ′(p)n

t + Ĉ(p)n
t + Ĉ ′(p)n

t + Ĉ ′′n
t

)
.

On the one hand, Lemmas 5.5, Lemma 5.6 and (5.53) yield

lim
p→∞ lim sup

n→∞
P
(
|V (p)n

t | > ε
)

= 0

for all ε > 0. On the other hand, we fix the Brownian motion B, independent of F .
Since γ(p)t(ω) converges pointwise to γt(ω) and stays bounded by (5.55), it is obvious
that Y (p)t

P−→ Yt (recall ((3.8) and (5.54) for Y and Y (p)). Then the result follows from
(5.54) in a standard way.

It remains to prove (3.10). We set for r = 1, 2, 3:

Γ(r)n
t =

∑

i∈I(r,n,t)

u(r)n
i , (5.64)

where

I(r, n, t) =




{0, 1, · · · , [t/∆n]− kn + 1} if r = 1
{0, 1, · · · , [t/∆n]− 2kn + 1} if r = 2
{0, 1, · · · , [t/∆n]− 3} if r = 3

and

u(1)n
i = (Zn

i )4, u(2)n
i = ∆nζ ′′(Z)n

i , u(3)n
i = ∆n(∆n

i+1Z)2(∆n
i+3Z)2.

(Note the different summations ranges I(r, n, t), which ensure that we take into account
all variables ζ(r)n

i which are observable up to time t, and not more.)
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Then a simple computation shows that (3.10) and (3.14) are implied by

Γ(r)n
t

P−→ Γ(r)t :=
∫ t

0
γ(r)sds (5.65)

for r = 1, 2, 3, where

γ(1)t = 3θ2ψ2
2σ

4
t + 6ψ1ψ2σ

2
t αt +

3
θ2

ψ2
1α

2
t

γ(2)t = 2θ2ψ2σ
2
t αt + 2ψ1α

2
t

γ(3)t = 4α2
t .

We set u′(r)n
i = E(u(r)n

i | Fn
i ), and we denote by Γ′(r)n

t for r = 1, 2, 3 the processes

defined by (5.64), with u(r)n
i substituted with u′(r)n

i . Then we have Γ′(r)n
t

P−→ Γ(r)t for
r = 1, 2, 3: this is a trivial consequence of (5.44), (5.45) and (5.46) and of an approximation
of an integral by Riemann sums. Hence it remains to prove that Γ(r)n

t − Γ′(r)n
t

P−→ 0, a
result obviously implied by the following convergence:

∑

i,j∈I(r,n,t)

v(r, n, i, j) → 0, where v(r, n, i, j) =
(
(u(r)n

i −u′(r)n
i )(u(r)n

j −u′(r)n
j )

)
. (5.66)

We have |v(r, n, i, j)| ≤ K∆2
n by (5.42) for r = 1, by (5.43) for r = 2 and by (5.46) for

r = 3. Further v(1, n, i, j) = 0 when |j − i| ≥ kn, and v(2, n, i, j) = 0 when |j − i| ≥ 2kn,
and v(3, n, i, j) = 0 when |j − i| ≥ 5, so (5.66) holds in all cases.
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