
Pairwise Trade and Coexistence of Money
and Higher-Return Assets∗

Tao Zhu†and Neil Wallace‡

June 20, 2005

∗Earlier versions of this paper were circulated under the title, “Cash-in-advance with
a Twist.”

†Department of Economics, Cornell University
‡Department of Economics, The Pennsylvania State University

1



Abstract

A new theory of coexistence of money and higher-return assets is set out.
It applies to any setting in which some trade involves an exchange of goods
for assets and occurs between two people–a buyer and a seller. We show
that there exists a function mapping the portfolios of the buyer and the seller
to the trade that occurs such that (i) the trade is in the buyer-seller core and
(ii) some people are induced to enter the buyer-seller meeting with money.
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1 Introduction

Almost every applied model designed to study monetary policy contains
noninterest-bearing money and higher-return assets. The higher-return as-
sets may be capital, titles to capital, or government bonds. Therefore, in
some way or other, such models confront the challenge that Hicks [7] said was
the main one facing monetary theory: why is money held when higher-return
assets exist? In this paper, we provide a new theory of such coexistence. Our
theory assumes that some trade involves an exchange of a good (or goods)
for assets and occurs in pairs, between a buyer of a good and a seller. We
show that there exists a function mapping the portfolio (of money and higher
return assets) brought into the meeting to the trade that occurs such that
(i) the trade is in the pairwise core for the meeting and (ii) the trade gives
buyers larger payoffs the more money they have. The second property gives
potential buyers an incentive to enter pairwise meetings with some money
and, thereby, implies coexistence. The first property implies that there is
neither individual nor cooperative defection by the pair from the trade.
Why do we need a new theory? Isn’t cash-in-advance, the dominant

existing theory, adequate? We think not. When trade occurs in pairs, cash-
in-advance is not in the pairwise core and, therefore, is a strange restriction to
impose: it leaves positive gains from trade for the two people in the meeting.
When trade occurs in large markets, the main rationale for cash-in-advance
models is a Shapley-Shubik trading-post model and an equilibrium in that
model with no activity at the posts at which assets other than money can
be traded for goods (see, for example, Howitt [8]). Although such inactivity
is consistent with a Nash equilibrium in a Cournot-type game because one
person has no incentive to place quantity orders on an inactive post, the
same argument implies that no trade at all is an equilibrium–a troublesome
feature of the model. Dubey and Shubik [5] introduce a refinement which
eliminates no trade: there is a small exogenous offer at each post and an
equilibrium satisfies the refinement if it is a limit as that exogenous offer
approaches zero. Krishna [9] applies a version of that refinement in a setting
with money and higher-return assets and shows that the cash-in-advance
equilibrium does not satisfy the refinement. Moreover, we suspect that the
cash-in-advance equilibrium does not survive other ways of endogenizing ac-
tivity at potential trading posts. If so, then, even without imposing the core
requirement, the cash-in-advance equilibrium is also questionable for large
markets.
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The rest of the paper is organized as follows. In section 2 we formally
describe our trading procedure against the background of a setting in which
safe one-period discount bonds, made available by the government, dominate
money in rate-of-return. There, our discussion is partial equilibrium in that
we take as given the way people value post-trade assets. In section 3, we
demonstrate that our theory actually accomplishes what we claim–namely,
that there exist models which have equilibria with valuations of post-trade
wealth of the sort we assume in section 2 and that people actually choose
to hold money. In section 4 we discuss the generality of our theory and in
section 5 we conclude.

2 Pairwise trade

The crucial part of our model describes how trade for goods occurs. We
assume that it occurs between a buyer and a seller, that it must be spot
quid-pro-quo trade, and that there are three distinct and divisible objects po-
tentially involved in trade: a perishable good, money, and one-period bonds
that mature (turn into money) at the end of the period.
This pairwise trade should be thought of as taking place against the

following sequence of actions in discrete time. Each person begins a date
with some money. Then the person can exchange money for bonds at an
exogenous price p ∈ (0, 1) in terms of money–each bond being a title to
a unit of money at the end of the period. (Imagine that there are vending
machines maintained by the government which offer such bonds in exchange
for money.) Then, after portfolios are chosen, there is pairwise trade involving
assets and goods. Then the bonds mature–automatically turn into money–
and the implied interest payments are financed by a tax on nominal wealth
that mimics financing by money creation (inflation). For this setting, we say
there is coexistence of money and higher-return assets if not all the money is
used to buy bonds–if some people leave the bond-buying stage with some
money.
In pairwise meetings, we assume that there are unambiguous buyers and

sellers of the good and that there is no asymmetric information except about
trading histories.1 In particular, preferences and portfolios of assets are
known. We let (y1, y2) denote the pre-trade portfolio of the buyer and let

1Trading histories are private in a way that precludes any borrowing and lending be-
tween people.
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(y01, y
0
2) denote that of the seller, where the first component is money and the

second component is bonds measured at maturity value. It is convenient to
let yz = y1 + y2 and y0z = y01 + y02.
We let (q, x) denote a trade, where the first component is the quantity

of the good transferred from the seller to the buyer and the second compo-
nent refers to the quantity of nominal wealth, money and bonds, transferred
from the buyer to the seller. Payoffs depend on trades and initial portfo-
lios as follows. The buyer’s payoff is ub(q) + gb(yz − x), while the seller’s is
us(q) + gs(y

0
z + x). Each of the functions ub, us, gb, and gs maps R+ → R

and is concave. Also, us is strictly decreasing (in the amount of the good
surrendered), while the remaining functions are strictly increasing. Finally,
at least ub or us is strictly concave. (The assumptions about ub and us are
primitives, while the assumptions about gb and gs have to be confirmed as
part of a general equilibrium.)
The trade that occurs is the outcome of the following two-step maximiza-

tion problem. The first step contains a cash-in-advance constraint, while the
second step does not. In the first step, buyer utility is maximized subject
to the cash-in-advance constraint and to no trade as a lower bound on seller
utility. In the second step, seller utility is maximized subject to a lower
bound on buyer utility given by the first step outcome.

Problem 1 First, choose (q1, x1) to max{ub(q1) + gb(yz − x1)} subject to
x1 ≤ y1 and

us(q1) + gs(y
0
z + x1) ≥ us(0) + gs(y

0
z). (1)

Then, choose (q, x), the final trade, to max{us(q) + gs(y
0
z + x)} subject to

ub(q) + gb(yz − x) ≥ ub(q1) + gb(yz − x1). (2)

We summarize properties of the solution to problem 1 in the following
proposition.

Proposition 1 The final trade, (q, x), that solves problem 1 is unique and
is in the buyer-seller core. Moreover, the solution satisfies (q − q1, x − x1)
≥ (0, 0) and strictly if and only if the cash-in-advance constraint, x1 ≤ y1, is
binding.
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Proof. Existence and uniqueness of the solution are standard. By the
constraint x1 ≤ y1 being binding, we mean that the solution to step 1 would
be different if it were removed. Suppose first that it is not binding. Then, by
definition, the step-1 trade is in the buyer-seller core. And because the step-
1 solution is unique, it follows that (q − q1, x − x1) = (0, 0). Now suppose
the constraint x1 ≤ y1 is binding. Then, the step-1 solution is not in the
buyer-seller core. Because the step-2 outcome is by definition in that core, it
follows that (q− q1, x− x1) 6= (0, 0). And, obviously, (q− q1)(x− x1) > 0. If
x− x1 < 0, then (q, x) is a feasible step-1 trade which gives at least as high
a payoff to the buyer as does (q1, x1) and gives a higher payoff than (q1, x1)
to the seller. It follows that there exists ε > 0 such that (q + ε, x) is feasible
in step 1 and gives a higher step-1 value of the objective than (q1, x1), a
contradiction.

The solution to problem 1 can be depicted in an Edgeworth Box (see
figure 1). The box is drawn for an endowment environment in which the
buyer starts with none of the good (point A is the initial endowment). The
wealth total depicted is yz + y0z. Notice that for given (yz, y

0
z), neither the

size of the box, nor the endowment point, nor the indifference curve map
depends on the composition of the portfolios. However, our selection of a
trade does. If the cash-in-advance constraint is not binding in step 1, then
the step-1 outcome is point B and the step-2 trade is null. Otherwise, the
step-1 outcome is a point like C and the final outcome is point D.
Problem 1 would not be of much interest–at least, relative to cash-in-

advance models–if the cash-in-advance constraint in step 1 were never bind-
ing. As might be suspected, that is not generally the case.

Corollary 1 Assume that gb and gs are differentiable. Consider a person
who prior to choosing a portfolio will with positive probability be the buyer
in some meetings in which no-trade is not in the pairwise core. This person
chooses a portfolio so that the cash-in-advance constraint in step 1 of problem
1 is binding in some of this person’s pairwise meetings.

Proof. Suppose, by way of contradiction, that the cash-in-advance con-
straint in step 1 of problem 1 is never binding for the person–whether the
person is a buyer or a seller. It follows that the payoff at the choice-of-
portfolio stage is some weighted average of the payoff from being a buyer
and the payoff from no-trade. (Because step 2 is null, the payoff from be-
ing a seller is the same as that of no-trade.) Because no-trade is not in the
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Figure 1: Alternative solutions to problem 1.

pairwise core for some meetings in which the person is a buyer, this person
has positive wealth. Now, let y∗ = (y∗1, y

∗
2) denote the portfolio chosen by

the person. Either y∗1 = 0 or y∗1 > 0. If y∗1 = 0, then the cash-in-advance
constraint in step 1 of problem 1 is binding when this person is the buyer in
a meeting in which no-trade is not in the pairwise core. So suppose y∗1 > 0.
Then because p < 1, yz = y1 + y2 is strictly decreasing in y1 for all (y1, y2)
with y1 + y2/p = y∗1 + y∗2/p. That implies that the payoff from no-trade
is strictly decreasing in money holdings. By the contradicting assumption,
it also implies that the payoff from being a buyer is strictly decreasing in
money holdings. To see this, first notice that if (q1, x1) solves step-1 of
problem 1, then (1) is binding in the step-1 problem, which implies that
(q1, x1) = (f(x1), x1), where f(x1) = u−1s [us(0) + gs(y

0
z)− gs(y

0
z + x1)], a dif-

ferentiable and concave function. It follows that the step-1 objective can be
written as F (x1, y1, y2) ≡ ub[f(x1)] + gb(y1 + y2 − x1). Because F is strictly
concave in x1, the x1 that solves step 1 of problem 1, denoted x∗1, is unique
and differentiable in y. Then, dF/dy1 = F1 · dx∗1/dy1 + g0b · (1 − 1/p). The
contradicting assumption implies that F1(x∗1, y

∗
1, y

∗
2) = 0 and, therefore, that

dF (x∗1, y
∗
1, y

∗
2)/dy1 < 0. But that contradicts optimality of y

∗.

Now we turn to some further comments about problem 1. Problem 1 does
not describe a two-stage game in which the buyer moves first and the seller,
upon acceptance, moves second. For one thing, if it were such a game, then
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the buyer would not have to respect the lower bound on the seller pay-off in
(1) because both the buyer and the seller anticipate a second stage that will
benefit the seller. Nevertheless, the final trade is weakly implementable. Here
is a game, consistent with trade being voluntary, which gives the problem-1
outcome as one equilibrium. The buyer and seller say “cooperate” or “defect”
to the problem-1 outcome with “defect” by either person implying no trade
in the meeting and “cooperate” by both implying trade according to the
problem-1 outcome.
Of course, this game has a very limited strategy space. To implement a

core allocation by games with rich strategies, we can follow Perry and Reny
[12]. For the alternating-offer game in [12], the observed portfolios of the
buyer and the seller can be interpreted as determining the strategies that
each person expects the other person to play. In that way, they affect the
final outcome. In other words, the portfolios play the role of a coordination
device. They can play such a role because the pairwise core is not degenerate.
We do not claim that problem 1 is the only way of selecting a trade con-

sistent with coexistence.2 For example, we could assign some small positive
gain from trade to the seller in step 1 and some small gain to the buyer in
step 2. If those are small enough, then they should be consistent with coex-
istence. Indeed, because step 2 produces the pairwise-core result, one could
conceivably replace our step 1 by something quite a bit different.
Finally, the pairwise and, hence, non-competitive aspect of trade is cru-

cial. The simplest way to see that is to let the size of a meeting grow by
replicating the buyer-seller pair in a meeting. If that is done and if we
continue to require that the outcome be in the meeting-specific core, then
coexistence necessarily disappears as the meeting size grows because the core
converges to a competitive equilibrium. In our setting, the way that bonds
and money appear in payoffs implies that any competitive equilibrium has
money and bonds at maturity value trading one for one. And that, of course,
is not consistent with coexistence.
Under some additional assumptions–about the functions gb and gs, the

distribution of wealth at the start of the period, and the kinds of meetings

2And, we are obviously not claiming that problem 1 is the only way to achieve an
outcome in the pairwise core. Another way to achieve a pairwise core outcome is for
people to ignore the difference between money and bonds at maturity (drop the cash-in-
advance constraint in step 1 of problem 1) and another is to replace the cash-in-advance
constraint with a bonds-in-advance constraint. Of course, neither of these will produce
coexistence.
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that occur–we could show coexistence by showing that some people leave the
bond-buying stage with some money. However, because any such proposition
requires more assumptions than those so far made, we prefer to demonstrate
coexistence as part of a general equilibrium.

3 Coexistence in general equilibrium

We describe coexistence for two examples, both of which use the familiar
matching environment originally set out by Shi [14] and Trejos and Wright
[16]. Time is discrete. There is a non-atomic, unit measure set of each of
N ≥ 3 types of people and there are N distinct produced and perishable
types of divisible goods at each date. A type n person, n ∈ {1, 2, ..., N},
produces type n good and consumes only type n+ 1 goods (modulo N) and
has period utility u(qn+1)−qn, where qn+1 ∈ R+ is consumption of good n+1
and qn ∈ R+ is production of good n. The function u : R+ → R+ is strictly
concave, strictly increasing, continuously differentiable and satisfies u(0) = 0
and u0(∞) = 0. In addition, u0(0) is sufficiently large.
The first example is the standard version of the above model in which

people are infinitely lived and in which the state of the economy is a non-
degenerate distribution of wealth. The second example is a 2-date lived,
overlapping-generations (OLG) version of the matching model in which there
is no such state variable.
We start with the first example. As is standard, people maximize the

expected value of discounted period utility and there is one random pairwise
meeting per date. In this version, aside from the price of bonds, there are
three exogenous nominal quantities: an upper bound on individual wealth,
the size of the smallest unit of an asset, and average wealth. We normalize
by letting the smallest unit of an asset be unity so that the set of possible
individual wealth holdings is Z = {0, 1, 2, ..., Z}. We denote average wealth
per type by z̄ > 0 and assume only that z̄ and Z/z̄ are sufficiently large.
(The first insures that the indivisibility is not too severe and the second
that the bound is not too severe). And because assets are indivisible, we
permit lotteries at the portfolio choice stage when people buy one-period
discount bonds at the price p, in pairwise trade when trade occurs according
to problem 1, and for the proportional tax on wealth that is used to finance
interest payments.3

3There should be no concern about the disparity between these assumptions about

9



We define a steady state to be a fixed point of the relevant version of the
usual mapping studied in heterogeneous agent models, a mapping from “end-
of-period” value functions and “beginning-of-period” distributions to sets
of “end-of-period” distributions and “beginning-of-period” value functions.
(For the detailed definition, see [18], an unpublished appendix to this paper.)
There are four steady-state objects. Two pertain to the start of a date, just
prior to the choice of a portfolio: w : Z→R, where w(z) is the expected
discounted value of having wealth z; and π : Z → [0, 1], where π(z) is the
fraction of each specialization type with wealth z. The other two pertain to
the situation after the choice of portfolios. Let Y = {y = (y1, y2) ∈ Z× Z :
y1+y2 ≤ Z}, the set of possible portfolios after bond purchases that satisfies
the restriction that total nominal wealth does not exceed Z. The other two
objects are h : Y → R, where h(y) is the expected discounted value of
having the portfolio y, and θ : Y → [0, 1], where θ(y) is the fraction of each
specialization type with portfolio y. In [18], we prove

Proposition 2 If u0(0), z̄, and Z/z̄ are large enough and if p is sufficiently
close to 1, then there exists a steady state (w, h, θ, π) with w bounded (inde-
pendently of Z, z̄, and p), strictly increasing, and strictly concave and with
π having full support.

The logic of the proof is as follows. If p = 1, then the model is a money-
only model with take-it-or-leave-it offers by buyers, the model for which Zhu
[17] shows that the conclusions of proposition 2 hold. Using the same kind of
argument, we show that if p = 1, then the above mapping has index 1 for some
appropriately defined fixed-point index.4 That and upper-hemicontinuity
of the mapping in p imply existence for p near 1 via an argument that is
analogous to the implicit function theorem.5 We also show in [18] that a
proposition-2 steady state implies coexistence.

assets and those used in section 2. A bound on wealth is consistent with section 2 provided
the pairwise core is defined taking the bound as a given. As regards the indivisibility
of assets, with lotteries and with a concave value function defined on Z, the functions
gs and gb in section 2 can be taken to be the extension of that function to [0, Z] via
linear interpolation. With that interpretation, proposition 1, which did not require strict
concavity of gs or gb, is unchanged. However, corollary 1 may not hold, because gs and gb
are not differentiable. (They are differentiable in the second example.)

4Here, we make essential use of the form of step 1 of problem 1.
5The main barrier to producing an existence proof for arbitrary p is that the mapping

used does not preserve concavity of value functions for an arbitrary p. (The problem is
that sellers with different quantities of assets who face a given buyer end up with different
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Corollary 2 If u0(0), z̄, and Z/z̄ are large enough, then in a proposition-
2 steady state a positive measure of people leave the bond-buying stage with
some money.

This proof does not rely on p being near 1. It shows that sufficiently
rich people leave the bond-buying stage with some money. The full-suppport
property of π in proposition 2 assures that there are such people.
Now we turn to the second example. Here, we embed the kind of cen-

tralized and decentralized trade in Lagos and Wright [11] in an OLG model.
We normalize by assuming that the initial old of each specialization type in
the aggregate hold a unit amount of divisible money. Each two-period lived
member of generation t of type n, young at t and old at t+1, maximizes the
expected value of U(ct) + u(qn+1,t)− qn,t + V (ct+1), where ct is consumption
of the single perishable, “centralized-trade” date-t good and where the q’s
are the date-t specialized goods of the matching model. Each such person
is endowed with ω units of the single “centralized-trade” date-t good and
none of the single “centralized-trade” date-t + 1 good. The function u is
that described above. We assume that U and V are increasing, concave, and
continuously differentiable. In addition, V is strictly increasing.
Events at date t occur as follows. First, there is centralized competitive

trade among everyone–the old and the young. In addition to choosing ct,
each young person chooses a portfolio of money and bonds exactly as in
section 2. Then, there are pairwise meetings at random only among the
young (the old have died). This trade is conducted as described in problem
1 and the payoffs are determined by the realization of u(qn+1,t)−qn,t for each
person. Finally, a proportional tax is imposed on nominal wealth to finance
interest on bonds.
This model has three steady-state objects. There is a price of money,

v, in terms of the centralized market good. (This scalar replaces (w, π) in
the model above.) And there are analogues of h and θ in the above model,
where h(y) is the discounted value of the portfolio y = (y1, y2) and θ is the
distribution of such portfolios. Because our goal is simply to produce another
example of coexistence, nothing is lost by specializing the model by assuming
that the young do not consume in the centralized market (U(·) ≡ 0). This
immediately implies that any steady state with valued money has v = ω. For
such a version, all that is left is the determination of h and θ.

step-1 trades.) And, without concavity, we do not know how to show that there is a steady
state with trade.

11



The conditions for equilibrium under U(·) ≡ 0 are simple. Let w(z) ≡
V ((1− τ)zω), where z is nominal wealth after pairwise trade but before the
tax, τ , is levied. Consider a person with portfolio y who meets someone
with y0. If a buyer, then the person’s payoff (the buyer’s payoff in step 1 of
problem 1) is

f(y, y0) = max
(q,m)

u(q) + w(yz −m)

subject to −q + w(y0z +m) ≥ w(y0z) and m ≤ y1; if a seller, then the payoff
(the seller’s final payoff in problem 1) is

g(y, y0) = max
(q,m)
−q + w(yz +m)

subject to u(q)+w(y0z−m) ≥ f(y0, y) and m ≤ y0z. Hence, if the distribution
of portfolios is θ, the value of holding y just before pairwise meetings is

h(y) =
N − 2
N

w(yz) +
1

N

R
f(y, y0)θ(dy0) +

1

N

R
g(y, y0)θ(dy0). (3)

Let
G(h) = {y : y ∈ argmaxh(y) subject to (y1 + py2) ≤ 1}. (4)

Because all the young are identical when they choose a portfolio, one
might think that there is a steady state with a degenerate θ. However, that
may not be the case. For the same reason as in the model above, h cannot
be shown to be concave in the choice of a portfolio. Therefore, G(h) may not
be a singleton and randomization over the elements of G may be required for
equilibrium.6

Definition 1 Assume U(·) ≡ 0. An equilibrium is (θ, h) such that (i) h and
θ satisfy (3) when τ = 1 −

R
1

1+y2(1−p)θ(dy); and (ii) the support of θ is a
subset of G(h).

We have the following result regarding existence.

6Although a non degenerate θ can be part of an equilibrium in this OLG model, θ is
not, of course, a state variable of the model. The fact that this model has no state variable
is a consequence of the assumption that people live for only two dates. That implies that
all those who enter the centralized market with wealth are old and, therefore, at a corner;
they want to sell all their wealth. That corner is the analogue in this OLG model of the
quasi-linear preferences in Lagos and Wright [11].
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Proposition 3 There exists (θ, h) that satisfies definition 1.

Proof. Let Θ be the set of probability measures on [0, 1] × [0, 1/p] and
let z be the set of real continuous functions on [0, 1]× [0, 1/p]. Definition 1
induces a mapping T from Θ to Θ as follows. First, (3) defines a mapping
θ 7→ T1(θ) from Θ to z. (This mapping subsumes the dependence of h on τ
via the expression for τ in definition 1.) Second, the set of all randomizations
over G(h) (see (4)) defines a mapping h 7→ T2(h) from z to Θ. It turns
out that T2(h) = argmaxθ0

R
h(y)θ0(dy), where θ0 ∈ Θ and satisfies θ0{y :

y1+ py2 > 1} = 0. Let T (θ) = T2(T1(θ)). Let Θ be equipped with the weak*
topology and let z be equipped with the sup-norm topology. By standard
arguments, T1 is continuous and T2 is upper hemicontinuous, compact-valued,
and convex-valued. Therefore, T is upper hemicontinuous, compact-valued,
and convex-valued. Then by Fan’s fixed point theorem, there exists a fixed
point of T . If θ is such a fixed point, then, (θ, T1(θ)) is an equilibrium.

The following corollary implies coexistence.

Corollary 3 If u0(0) > 2N/p and (θ, h) satisfies definition 1, then
R
y1=0

θ(dy) <
1.

Proof. By way of contradiction, suppose that every person who is met
with positive probability has the portfolio (0, 1

p
). We show that this implies

that (0, 1
p
) /∈ G(h). In particular, we show that this implies δ(ε) ≡ h(ε, 1−ε

p
)−

h(0, 1
p
) > 0 for sufficiently small ε. There are three kinds of meetings to

consider.
(i) The person is neither a buyer nor a seller. Then the payoff difference

between having the portfolio (ε, 1−ε
p
) and having (0, 1

p
) is w(1

p
+ε− ε

p
)−w(1

p
)

> w(1−ε
p
)− w(1

p
) ≡ −A1(ε).

(ii) The person is a seller. Because the buyer holds (0, 1
p
), step-1 of

problem 1 is null. This implies that a final trade that is feasible for the seller
with portfolio (0, 1

p
) is also feasible if the seller has (ε, 1−ε

p
). It follows that

the payoff difference is bounded below by −A1(ε) because 1p is a lower bound
on the wealth of the seller with (0, 1

p
) and because w is concave.

(iii) The person is a buyer. Because the seller holds (0, 1
p
), a feasible step-

1 trade for a buyer with (ε, 1−ε
p
) is ε in exchange for w(1

p
+ε)−w(1

p
) ≡ A2(ε)

amount of the good. Hence, the step-1 payoff to the buyer with (ε, 1−ε
p
) is
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bounded below by u(A2)+w(1−ε
p
), while the buyer with (0, 1

p
) gets the payoff

w(1
p
). Hence, the payoff difference is bounded below by u(A2)−A1(ε).
Now, assembling these results, we have

δ(ε) >
1

N
u(A2(ε))−A1(ε) >

A2(ε)

N
u0(A2(ε))−A1(ε), (5)

where the second inequality follows from u(0) = 0 and the mean value the-
orem applied to u. Now, again by the mean value theorem, A1(ε) = ε

p
f1(ε),

where f1(ε) is the derivative of w evaluated at some point in the interval
[1
p
− ε

p
, 1
p
]; and A2(ε) = εf2(ε), where f2(ε) is the derivative of w evaluated

at some point in the interval [1
p
, 1
p
+ ε]. Therefore,

δ(ε) >
ε

p
f1(ε)[

f2(ε)

(N/p)f1(ε)
u0(A2(ε))− 1]. (6)

Because V , and, hence, w, is continuously differentiable, limε→0f2(ε) =
limε→0f1(ε) = w0(1

p
) = V 0(ω) > 0. Therefore, for all sufficiently small ε,

f2(ε) > f1(ε)/2. Hence, for all such ε,

δ(ε) >
ε

p
f1(ε)[

1

2(N/p)
u0(A2(ε))− 1]. (7)

But, then, because A2(ε) > 0 and limε→0A2(ε) = 0, u0(0) > 2N/p implies
δ(ε) > 0 for all sufficiently small ε.

A few comments are in order about this proof. If the setting were such
that a person at the portfolio stage was a buyer for sure, then only the
third step of the proof would be needed and the proof would show that a
prospective buyer has a dominant strategy to enter pairwise trade with some
money. If not, then the buyer’s payoff would be u(0) +w(1/p) even though,
in terms of figure 1, the final trade would give the point on the contract
curve on the buyer’s indifference curve through the endowment point A. If
the buyer instead enters trade with a small amount of money, then the buyer
receives a problem-1, step-1 payoff that has a small amount of consumption
and almost as much wealth. That makes u0(0) relevant for the comparison
between the two payoffs. In the setting of the above matching model in which
a person at the portfolio-choice stage does not know whether he will be a
buyer or a seller, we use the assumption that no other buyer has money to
help us bound the loss to a seller from having entered pairwise trade with
some money.
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4 Generality of the theory

As should be evident, problem 1 is general in the sense that it can be ap-
plied against the background of almost any model with pairwise trade that
takes place after portfolios are chosen. Moreover, it can be applied to dif-
ferent assets and can be combined with markets in assets. The simplest
way to introduce a market in assets is to interpret an equilibrium as one in
which the equilibrium quantity of bonds is treated as exogenously supplied
by the government to a competitive market in money and bonds, a market
which replaces the vending machines mentioned above. Clearly, p is then an
equilibrium price of bonds.
Using such a market formulation, the exogenous stock of higher-return

assets need not be government bonds. For example, there could be a stock
of real assets–assets with real dividends. Of course, for such a model, the
nature of the dividends, including when they are realized, has to be described.
In the setting with some goods trade in the centralized market, it is simple
to assume that the dividends are in the form of the centralized market good.
Notice, by the way, that in such a model, achieving coexistence is the same
as achieving existence of an equilibrium in which money is valued.
The model can also be used to get imperfect substitutability between the

monies of different countries–even under fixed exchange rates.7 To adapt it
to that purpose, let p = 1 and assume that the “bonds” do not automatically
turn into money. Instead, let them have a distinct and permanent color so
that they are a distinct money. Also, let the vending machines maintain a
fixed exchange rate between the two monies by allowing people to buy or sell
one money for the other. If in problem 1 we assume that the favored money
is the seller’s “home” money, then buyers who anticipate meeting a seller
from a particular country will want to acquire the seller’s home money.

5 Concluding remarks

We have posed the coexistence challenge in as stark a form as is imaginable.
There are two reasons for doing that. First, and most important, almost
every model used to study monetary policy has such coexistence even if the
higher-return assets are not titles to money. Second, assets that resemble

7A two-money precurser of the theory appears in [13]. There, however, portfolios are
so special that either step 1 or step 2 of problem 1 is necessarily null.
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the bonds in the above setting have at times appeared in actual economies.
During the First World War, both the U.S. and France issued small denom-
ination, payable-to-the-bearer bonds and in neither instance did the bonds
drive out money (for the French experience, see Makinen and Woodward
[10]).8 The standard applied model, a cash-in-advance model, can meet the
coexistence challenge in that stark form. However, as we have suggested,
it shuts down markets in a way that is not robust to some ways of model-
ing whether markets are active and is not consistent with trades being in
meeting-specific cores.
We provide an alternative way to achieve coexistence. The alternative

depends on some trade occurring in two-person meetings. For such trade, we
show how to make a selection from the implied pairwise core so that what
happens in a meeting depends on the compositions of the portfolios brought
into the meeting in such a way as to give potential buyers an incentive to
enter the meeting with some money.
If we agree that trade should be modeled so that gains from trade are not

left on the table in meetings, then we have a limited set of options available to
explain coexistence. Those who insist on large meetings (competitive trade)
must depart from the stark way we have posed the coexistence challenge.
Departures would somehow have to reinterpret the coexistence challenge so
that the payoffs on other assets do not dominate money in so obvious a way.
One approach appeals to legal restrictions. It assumes that government

bonds are not marketable–perhaps, because they are large-denomination or
are book-entry bonds–and that legal restrictions preclude intermediation
that converts such bonds into small denomination, payable-to-the-bearer in-
struments. However, that approach does not account for episodes like the
one that Makinen and Woodward describe. Moreover, such legal restrictions
vanished in the U.S. in the early 1970’s. A variant is to assume that the
government requires payment in money (see Aiyagari et. al. [1] for a version
in which people meet in pairs and in which some meeting partners turn out
to be the government.) Another approach is to adapt Freeman’s counterfeit-
ing idea which he applied to titles to capital (see [6]): assume that bonds
are easier to counterfeit than money. Still another is to impose some trans-
action costs at the bond-buying stage. All of these are very different from
what we currently see in applied models. Even the transaction-cost option

8Anecdotes suggest that bonds sometimes, but rarely, traded for goods in those
episodes.
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is very different from assuming that some trades require money as in the
Baumol [4] and Tobin [15] inventory models and in their general equilibrium
descendents–for example, Alvarez, Atkeson, and Kehoe [2] and Alvarez, Lu-
cas, and Weber [3].
Readers who are willing to have some trade be in pairs now have another

option. They can adopt problem 1 or some variant of it and use it as their
model of coexistence. However, in using any such model to study the welfare
consequences of different policies, a question arises: Should the trading pro-
cedure in pairwise meetings be regarded as a policy? We have no firm view
on that question.
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