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Summary
Particle morphology plays a key role in affecting physical and mechanical
behaviors of granular media. While various mathematical approaches and
shape descriptors have been proposed to describe the morphological proper-
ties of granular particles, it remains a challenge to effectively incorporate them
for efficient discrete modeling of granular materials. This study presents a
new poly-superellipsoid-based approach for three-dimensional discrete element
method (DEM) modeling of non-spherical convex particles. A uniform mathe-
matical description of 3D poly-superellipsoidal surface is employed to represent
a realistic granular particle, which is shown to be versatile and effective in repro-
ducing awide range of shape features (including elongation, flatness, angularity,
and asymmetry) for real particles in nature. A novel optimization approach
based on hybrid Levenberg-Marquardt (LM) andGilbert-Johnson-Keerthi (GJK)
algorithms is further developed for efficient and robust contact detection in
DEM simulation of poly-superellipsoidal assemblies. Simulations of granular
packing and triaxial compression tests show that the proposed approach is gen-
erally robust and efficient for both dynamic and quasistaticmodeling of granular
media.
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1 INTRODUCTION

Micromechanics-based numerical approaches represented by the discrete elementmethod (DEM)1 are increasingly popu-
lar across many disciplines of engineering and science on capturing themechanical behaviors of granular materials while
providing grain-scale insights.2-6 In geomechanics applications, DEM users commonly employ idealized spherical dis-
crete elements to simulate granular grains due to the advantages this may offer, including easy contact detection and high
computational efficiency.6-10 However, numerical studies have proven that grain shape underpins various facets of the
mechanical responses for granular materials and should be properly accounted for in their modeling.11-15 Irregular shape
of grains, for example, has been found attributable to the increase in particle rotation/rolling resistance, the enhancement
of particle interlocking, and hereby the overall strength of a granular material, when compared with simulations with
spherical particles.16,17 Indeed, grain shape may play a key role in forming the fabric structure of a granular assembly18
and through which the macroscopic responses of the material are affected (see, eg, the stress-force-fabric relationship19).
A popular indirect way to consider shape effect while using spherical particles for computational efficiency is the
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introduction of rolling resistance at interparticle contacts or the so-called rolling resistance model.20,21 The rolling
resistance model indeed helps to gain increased shear strength alone for granular materials but remains ineffective in
reproducing other granular behaviors where grain shape has a clear imprint, such as the induced fabric structure, force
transmission mechanisms, and deformation characteristics.22 Therefore, it is sometimes mandatory rather than optional
to incorporate grain shapes directly in DEM simulations.
There have been progresses in attempting reconstructing sand grains with realistic shapes based on different mathe-

matical approaches and experimental techniques.23,24 Image processing techniques, for example, have been developed
to reconstruct 3D particles from computed tomography (CT) images of realistic grains, based on which characteristics of
particle shape and granular fabric can be analyzed.25-27 Fourier shape descriptors combined with random fields theory28
and spherical harmonics29 have been proposed to characterize the complex shape features associatedwith a natural grain.
Thesemethods have been further used to guide the clumping or clustering of spheres/disks (the clump technique) to gen-
erate virtual 3D/2D particles with realistic complex shapes for use in DEMmodeling.30,31 To render sufficient accuracy for
fitting the shape characteristics, however, a large number of spheres/disks are needed (approximately 100-400 reported
in the literature28,32) to form a single clumped particle, which invariably leads to unwanted dramatical increase in com-
putational cost due to orders of magnitude increase in need for contact detection in a DEM simulation.33 This may limit
the total number of clumped particles one can simulate in DEM. To partially alleviate the grief associated with clumped
approaches, Lim et al34 employed a nonuniform rational basis splines (NURBS) approach to represent convex grains for a
better computational efficiency. Nevertheless, as mentioned by the authors, the implementation of the contact detection
between two NURBS particles remains nontrivial, and a large number of control points are required for complex shapes.
More recently, Kawamoto et al35 proposed a level-set-based approach to handle contact detection of realistic particles
akin to using lookup tables with constant time complexity. It has been demonstrated that this approach enables effective
and direct DEMmodeling of realistic particles that are reconstructed from CT images. Understandably, the lookup table
strategy relies crucially on the availability of computer memory and poses stringent demand on the performance of com-
puters to run the contact detection in each DEM simulation step, which may lead to greatly increased computing time or
frequent system crashes as reported by the authors.
For practical DEMmodeling, there is still a need to weigh a balance between realistic approximation of particle shapes

and affordable computational efficiency. This is especially relevant for themajority of DEMmodelers who can only access
limited computational resources (eg, a multicore workstation at best) but wish to achieve realistic simulation results.
While it is widely agreed that particle shape does matter,36 the degree and extent one should and could reproduce the
particle morphology of realistic grains for DEM modeling remains an open issue. To this end, there have been endeav-
ors made on exploring non-spherical particle shapes for DEM modeling in the past decade. Clumping spheres to form a
non-spherical shape (ie, the clump technique31,37) is probably themost straightforward approach but with apparent draw-
backs as mentioned above. Where possible, it is always desirable to use as fewer spheres as possible in the clumping.38
Polyhedrons have been employed to simulate sand grains in geomechanical applications, eg, direct shear tests16 and triax-
ial tests39 of sands. To simulate sand grains by polyhedrons, the efficiency of contact detection depends stringently on the
number of vertices, even with efficient contact detection algorithms such as shortest link method40 and inner potential
particle.41 Polyhedrons suit well for modeling angular particles, whereas for less angular particles, it is preferable to use
implementation-friendly shapes to achieve better computational efficiency. Ellipsoids42,43 and ovals44 are among the early
pioneering successful attempts in using smooth shapes to capture elongation or flatness of particles. Superellipsoids18,45
are able to yield a broader range of smoothed particle shapes with control on angularity, elongation, and flatness.
The present study is motivated by a novel method based on poly-ellipsoid,46,47 which are constructed from pieces

of ellipsoids to capture possible skewness of realistic particles. We herein propose a uniform mathematical descrip-
tion of poly-superellipsoidal surface to represent a much broader range of convex particle shapes and capture major
shape characteristics, such as flatness, asymmetry, elongation, and angularity. A novel optimization methodology based
on hybrid Levenberg-Marquardt (LM)48 and Gilbert-Johnson-Keerthi (GJK)49 algorithms is further developed for effi-
cient and robust contact detection of poly-superellipsoidal particles in DEM. As will be demonstrated, the proposed
poly-superellipsoid-based approach offers an excellent representation of realistic grain shapes while facilitating efficient
and robust DEM simulations for granular media.
This paper is organized as follows: Sections 2 and 3 present themathematical descriptions of geometry and properties of

a poly-superellipsoidal particle. Themotion for poly-superellipsoidal particles is briefly introduced for the completeness of
presentation in Section 4. A highly robust and efficient algorithm of contact detection for poly-superellipsoids is proposed
and validated in Section 5. Demonstrative examples on simulations of granular packing and triaxial compression based
on the proposed method are presented in Section 6, followed by the major conclusions drawn from the study in Section 7.
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FIGURE 1 Superellipsoids with rx = 1.0, ry = 1.5, rz = 2 and varying
!1 and !2 [Colour figure can be viewed at wileyonlinelibrary.com]

2 PARTICLE GEOMETRY

2.1 Superellipsoid
The surface function of a superellipsoid in the local Cartesian coordinates can be defined as50
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where rx, ry, and rz are referred to as the semi-major axis lengths in the direction of x, y, and z axes, respectively, and
!i(i = 1, 2) are the shape parameters determining the sharpness of particle edges or squareness of particle surface. Similar
definitions of a superellipsoid can also be found in Williams and Pentland.51 Varying !i between 0 and 2 yields a wide
range of convex-shaped superellipsoid as exemplified in Figure 1. A typical parametric function of a superellipsoid surface
is given as

x = Sign (cos #)rx| cos #|!1 | cos$|!2 , (2a)

" = Sign (sin #)r"| sin #|!1 | cos$|!2 , (2b)

z = Sign (sin$)rz| sin$|!2 , (2c)
where # ∈ [0, 2%),$ ∈

[
− %
2 ,

%
2

]
and Sign(x) is the signum function.

The surface normal direction of a superellipsoid is another superellipsoid, which is a dual to the original one.50 Given
a normal vector (nx,ny,nz) on the surface, the corresponding local spherical coordinate (#,$) is obtained through the
following relationship:
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where atan2(x, y) is the arctangent function of x
"
producing a value in the interval (−%,%], which can be mapped to [0, 2%)

by adding 2% to the negative value.

2.2 Poly-superellipsoid
Motivated by the construction of a poly-ellipsoid proposed by Peters et al,46 a poly-superellipsoid is constructed by assem-
bling eight pieces of superellipsoids, as shown in Figure 2. The surface of each octant is controlled by Equation (1), and
the combination of eight surface functions yields the following surface functions of a poly-superellipsoid:
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FIGURE 2 A poly-superellipsoid (r+x = 1.0, r−x = 0.5, r+" = 0.5,
r−" = 2.5, r+z = 0.5, r−z = 1.7 and !1 = !2 = 1.0) in a local coordinate
system with origin A, at the geometric center and B, at the mass
center. Note: One color stands for one octant [Colour figure can be
viewed at wileyonlinelibrary.com]

FIGURE 3 Poly-superellipsoids with
r+x = 1.0, r−x = 0.5, r+" = 0.8, r−" = 0.9,
r+z = 0.4, r−z = 0.6 and A, !1 = 0.4,
!2 = 1.5, B, !1 = !2 = 1.0, C,
!1 = !2 = 1.5 [Colour figure can be
viewed at wileyonlinelibrary.com]

where rxi, ryi, rzi, !1i, !2i(i = 1, … , 8) are shape parameters of the ith octant, ie, 40 shape parameters in total for a
poly-superellipsoid. However, we can reduce these parameters according to a condition of a continuous and smooth
surface (C1 continuity) by defining

!1i = !1, !2i = !2, (5)
and

rx1 = rx4 = rx5 = rx8 = r+x , (x ≥ 0), (6a)

rx2 = rx3 = rx6 = rx7 = r−x , (x < 0), (6b)

r"1 = r"2 = r"5 = r"6 = r+" , (" ≥ 0), (6c)

r"3 = r"4 = r"7 = r"8 = r−" , (" < 0), (6d)

rz1 = rz2 = rz3 = rz4 = r+z , (z ≥ 0), (6e)

rz5 = rz6 = rz7 = rz8 = r−z , (z < 0). (6f)
As a result, only eight parameters in total are indeedneeded to control the shape of a poly-superellipsoid,where r+x , r+" , r+z

and r−x , r−" , r−z control the elongation of a particle in the positive and negative of the axes, respectively, and !i(i = 1, 2)
control the squareness of the surface. By varying !i, we obtain a difference in the surface of a poly-superellipsoid, referring
to Figure 3. With !1 = !2 = 1, the shape is identical to the so-called poly-ellipsoid46 (see Figures 2 and 3B). With r+x =
r−x , r+" = r−" , r+z = r−z , the shape is identical to a superellipsoid. For the convenience of discussion, two frame-fixed local
Cartesian coordinate systems with parallel axes but different origins are introduced: one is originated at the geometric
center shown in Figure 2A and the other at the mass center shown in Figure 2B. A transformation between the two
coordinates is readily given as

x′ = x − xc, "′ = " − "c, z′ = z − zc, (7)
where xc, yc, zc are coordinates of the mass center in the coordinate system XYZ, given in Equation (10). In the following
sections, the local coordinate with origin at the geometric center is set by default unless otherwise stated.
Figure 4 shows some examples of particle shapes represented by poly-superellipsoids. Evidently, the proposed

poly-superellipsoid-based approachmay provide a versatile description of particleswith a broad range of shapes. Indeed, it
is capable of capturing major shape features of realistic particles (nonconvexity can be approximately captured by clump-
ing several poly-superellipsoids, which is not a focus of this study), including flatness, asymmetry, and angularity. One
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FIGURE 4 Poly-superellipsoids with random values of shape
parameters [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Examples of realistic
particles (solid) fitted by
poly-superellipsoids (wireframe) with A,
!1 = 0.85, !2 = 1.0, r+x = 3.26, r−x =
2.67, r+" = 1.66, r−" = 1.59, r+z =
1.81, r−z = 1.67 and B, !1 = 1.1, !2 =
1.2, r+x = 2.07, r−x = 1.02, r+" = 1.26, r−" =
1.23, r+z = 1.40, r−z = 0.35 [Colour figure
can be viewed at wileyonlinelibrary.com]

possible way is by fitting point clouds of realistic particles with poly-superellipsoids, which can be done by minimizing
the relative error of the inside-and-outside function given below:

min
N∑
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where N is the number of points and xk, yk, zk are the coordinates of the kth point at the local coordinate system with ori-
gin at the geometric center. In general, there are 14 variables in total (eight parameters for particle shape, three for particle
center, and the rest three for particle orientation represented by three Euler angles) for fitting an arbitrary point cloud.
Solving such a large nonlinear least squares problem with 14 variables may seem daunting but is indeed practically oper-
ational. Some preprocessing can be done first to obtain a better initial guess for these variables. For example, the point
cloud can be aligned to the principal axes. Moreover, open-source solvers designed for large nonlinear least squares prob-
lems, eg, Ceres Solver52 and IPOPT,53 can be readily utilized to solve such an optimization problem. The implementation
detail is beyond the scope of this paper, which will be not presented for the sake of brevity. Two examples are shown in
Figure 5 as a demonstration, where the point clouds are aligned to the principal axes.

2.3 Support function and support point
Benefiting from the convexity of a poly-superellipsoid, we can construct a one-to-one mapping function S(n) from a sur-
face outward normal vector n(nx,ny,nz) to a surface point p(x, y, z) of a poly-superellipsoid with Equations (2a) to (2c)
and (3a) and (3b), ie, p = S(n). This function yields the furthest point on the surface in the direction of n, thus called
a support function, which is a convex function. The corresponding furthest point is called a support point, referring to
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FIGURE 6 A support point p on a particle surface with a given direction vector
v and a support function S(n). Note: n is the outward normal of particle surface
at the support point p [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 6. In mathematics, S(n) = sup{n · p|p ∈ Γ} where & is the particle surface. The aforementioned direction vec-
tor, ie, v in Figure 6, situates in the particle's local coordinate system, which rotates along with the particle. The particle
orientation is tracked by a quaternion q(qw, qx, q", qz) = cos #̂

2 + (êxi + ê"j + êzk) sin #̂
2 , where #̂ is the angle of the particle

rotating around a unit axis ê(êx, ê", êz). A rotation matrix R can be readily obtained from q so that for a given direction
vector v̂ in the global coordinate system, the local support point is S(R−1v̂), where R−1 is the inverse of R. The support
function S(n) will be frequently called upon by Equation (22) during the course of contact detection based on a common
normal method, which will be fully introduced in Section 5. For the sake of computational efficiency, it is not necessary
to explicitly compute # and $ in Equation (3), so that the support function S(n) can be expressed as

x = 1
2Sign (nx)
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where (1 and (2 are equal to cos2(#) and cos2($), respectively, given as follows:
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3 PARTICLE PROPERTIES

Themass center (xc, yc, zc) of a poly-superellipsoid can be obtained by weighing themass centers of all octants as follows:

xc =
∑8

i=1 xcimi

M , (10a)
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"c =
∑8

i=1 "cimi

M , (10b)
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M , (10c)

with

M =
8∑
i=1
mi, (11)

whereM is the mass of the poly-superellipsoidal particle and (xci, yci, zci) andmi are, respectively, the mass center and the
mass of the ith octant, obtained in a closed form as
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with
Sx1 = Sx4 = Sx5 = Sx8 = 1, Sx2 = Sx3 = Sx6 = Sx7 = −1,
S"1 = S"2 = S"5 = S"6 = 1, S"3 = S"4 = S"7 = S"8 = −1,
Sz1 = Sz2 = Sz3 = Sz4 = 1, Sz5 = Sz6 = Sz7 = Sz8 = −1,
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where ) is mass density of the material; the term B(x, y) is a beta function defined as

B(x, ") = 2∫
%∕2

0
sin 2x−1$ cos 2"−1$d$. (15)

The principal moments of inertia of an octant superellipsoid are determined by
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Therefore, the principal moments of inertia of a poly-superellipsoidal particle read as follows:

Icxx =
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(i)
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(18)
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FIGURE 7 Comparison between the
Monte Carlo and analytical results of
A, mass and B, principal moments of
inertia for 50 random
poly-superellipsoids [Colour figure can
be viewed at wileyonlinelibrary.com]

On the basis of the theorem of parallel axis, the principal moments of inertia in the local coordinate system with origin
at the mass center of a poly-superellipsoid are given as

Ixx = Icxx − ("2c + z2c )M,
I"" = Ic"" − (x2c + z2c )M,
Izz = Iczz − (x2c + "2c )M.

(19)

The particle properties (mass, mass center, and principal moments of inertia) can be numerically integrated with a
given function f(x) over the whole volume VPS of the poly-superellipsoid based on theMonte Carlo method54 according to

P = ∫VPS+ (x)dv ≃
Vbox
Np

Np∑
i=1

,(xi)+ (xi), (20)

where {xi|i = 1, … ,Np} is a set of quasirandom points uniformly distributed within a cuboidal box containing the
poly-superellipsoid; Np is the number of points; Vbox is the volume of the box; ,(xi) is an indicator function, which has a
value of 1 if xi is inside the poly-superellipsoid and 0 otherwise. The function f(xi) can be ), )xi, and )||xi||2, yielding an
integral P = M,Mxc, I +M||xc||2, respectively, where ) is mass density andM, xc, I are mass, mass center, and moment
of inertia, respectively. The mass and principal moments of inertia from the Monte Carlo method are plotted against that
from the analytical solution in Equations (11) and (19) in Figure 7, where Np = 107, ) = 1, and r+x , r−x , r+" , r−" , r+z , r−z are
randomly selected in [0.01, 5.0] and !1, !2 in [0.1, 1.9]. The Monte Carlo and analytical results agree with each other well,
suggesting that the analytical solution of particle properties has been correctly formularized.

4 EQUATION OF MOTION FOR POLY-SUPERELLIPSOIDS

Essential ingredients of DEM have been well documented in the literature, eg, O'Sullivan,33 which will not be repeated
here. For the completeness of presentation, we only briefly introduce the implementation of the poly-superellipsoids in
DEM relative to equations of motion. Consider two Cartesian coordinate systems: one is the global X̂Ŷ Ẑ, and the other
is the local one X′Y′Z′ fixed at the mass center with axes coinciding with the principal axes of inertia so that the moment
of inertia tensor is diagonal. Given a particle, its translation and rotation are governed, respectively, by the Newton and
Euler equations as follows:

F(b)
i + + (d)

i +
N∑
c=1
F(c)
i = mdvi

dt , (21a)

T(d)
i +

N∑
c=1
M(c)

i = Ii
d-i
dt − (I. − Ik)-.-k, (21b)

where i, j, k are subsequent indexes;m is particle mass; vi and -i are the translational velocity of particle mass center and
angular velocity around themass center, respectively;N is the number of contacts; F(c)

i is the contact force at contact c; F(b)
i
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is the body force; Ii is the principal moment of inertia;M(c)
i is the torque around the mass center at contact c; and + (d)

i and
T(d)
i are damping force and damping torque, respectively, which are artificially introduced to facilitate the dissipation of

kinetic energy in the system. The Newton equation is solved directly using the so-called leapfrog algorithm55 at the global
coordinate system, while the Euler equation for particle rotation cannot be solved using the aforementioned leapfrog
algorithm for non-spherical particles due to the nonequality in the three principal moments of inertia. To facilitate its
numerical implementation, quaternions are usually adopted to represent particle orientation and rotation. An extended
leapfrog approach proposed by Fincham56 can further be used to solve particle rotation.
At a given state, the global coordinate x̂ of a surface point (ie, the support point at the global coordinate system) of a

particle with a specified direction (or normal) n̂ is given by

x̂ = Ŝ(n̂) = RS(R−1n̂) − xc + s, (22)

where s is the particle position (ie, the mass center of particle) solved from the Newton equation; R is the rotation matrix
of a particle from the local coordinate system X′Y′Z′ to the global coordinate system X̂Ŷ Ẑ, ie, matrix-represented rotation
of the particle solved from the Euler equation and R−1 is its inverse transformation; S is the support function at the local
coordinate system XYZ, given in Equation (9); and xc is the mass center at XYZ.

5 CONTACT AND CONTACT DETECTION

For general contact detection (also called collision detection) of poly-superellipsoids, two sequential phases are consid-
ered: broad and narrow detection phases. For the broad contact detection phase, this study adopts the popular sweep and
prune algorithm with axis-aligned bounding boxes (AABB) in conjunction with with bounding spheres.57 In the narrow
detection phase, we follow the normal contact concept45,58 as detailed below.

5.1 Geometric and mechanical quantities at contact
Given two contacting particles A and B as shown in Figure 8, the two contact points: pA and pB, on each of the particle
surfaces are determined based on the common normal concept, whereby the outward normals of particle surfaces at pA
and pB are collinear to the contact normal c. Penetration of the two particles is defined in terms of the contact points
as d = pA − pB, which is employed to compute repulsive force (ie, normal contact force Fn) in the direction of contact
normal. A plane orthogonal to the penetration passing through its midpoint (ie, 12 (p

A −pB)) is taken as the contact plane,
on which the tangential contact force Ft (ie, sliding friction in usual) acts in an incremental manner but constrained by
the Coulomb condition. The magnitudes of Fn and Ft are given as follows:

|Fn| = Kn|d|,
|Ft| = min{|F′

t − KtΔu|,/|Fn|},
(23)

where Kn and Kt are normal and tangent contact stiffnesses, respectively; F′
t is the previous tangential contact force but

rotated to the current contact plane, which is initialized to 0 when two particles contact each other; Δu is the relative
displacement on the contact plane during the present time step; and / is the coefficient of sliding friction.

FIGURE 8 Two contacting particles with exaggerated overlap, after
Zhao et al18 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 9 Two-dimensional schematic of
the contact quantities for A, contacting and
B, noncontacting particle-wall pairs [Colour
figure can be viewed at
wileyonlinelibrary.com]

5.2 Particle-wall contact
Given a boundary wall B with an outward normal nB, it is generally assumed that particle-wall contact is activated at
the side pointed by nB. By virtue of the common normal concept, the contact normal c is identical to the antidirection
of nB, shown in Figure 9; thus, the contact point pA on a given particle A is obtained by the global support function in
Equation (22) as

pA = Ŝ(−nB). (24)
The other contact point pB can be readily obtained by projecting pA onto wall B. Therefore, the penetration d = pB − pA
and other contact quantities are solved. Note that a positive d·nB corresponds to a valid contact (Figure 9A); otherwise, the
particle-wall contact is virtual (Figure 9B). The above description of particle-wall contact detection can be easily extended
to particle-facet pairs withmarginally additional computational cost by checking whether pB stays within the facet or not.

5.3 Particle-particle contact
5.3.1 Optimization problem
By introducing the common normal concept,45,58 the outward normal nA at point pA shares a common normal with the
contact normal c, while the outward normal nB at point pB has an antidirection of c, ie,

nA = −nB = c. (25)

Therefore, considering Equation (25), the contact points are expressed as

pA = ŜA(c), pB = ŜB(−c). (26)

The candidate penetration is given as
d = ŜB(−c) − ŜA(c) = −ŜA−B(c), (27)

where ŜA−B is the support function of Minkowski difference between particles A and B. Figure 10 shows the Minkowski
difference C of two arbitrary convex shapes A and B, ie, C = A − B = {a − b|a ∈ A, b ∈ B}. Herein, a helpful lemma
on Minkowski difference is introduced as follows59: as shown in Figure 10A, the Minkowski difference C encloses the
origin, suggesting that particles A and B contact with one another and vice versa; while if particles A and B do not have
intersection, then the Minkowski difference C does not enclose the origin, and vice versa, as shown in Figure 10B.
Finding the penetration depth ||d|| can be recast into the following unconstrained optimization problem with contact

normal c as a parameter:
min
c

||d|| = min
c

||ŜA−B(c)||. (28)

The equality of Equation (28) suggests twopromising iterative algorithms, ie, the LMalgorithm48 and theGJKalgorithm,49
which can be individually implemented to search the penetration depth. In this work, a hybrid approach of these two
algorithms is proposed to achieve a more robust and efficient solution, which is detailed in the following subsection.
Furthermore, the candidate penetration d can be regarded as the contact penetration once it shares a common normal
with the contact c, ie,

d × c = !. (29)
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FIGURE 10 Two-dimensional sche-
matic of Minkowski difference C of two
arbitrary convex particles A and B A,
with or B, without contact [Colour figure
can be viewed at wileyonlinelibrary.com]

5.3.2 Hybrid LM and GJK
An efficient approach to solving the optimization problem is needed due to the intensive computational cost during
contact detection within a granular system. The LM algorithm,48 popular for solving nonlinear least-squares problems, is
a combination of the steepest decent method and the Newton-Gauss method. To obtain a better performance of the LM
algorithm, a scheme of dimensionality reduction for the parameter space is introduced as follows. By introducing a local
spherical coordinate system, the contact normal c can be parameterized by two angles: ( and * (in radian), ie,

c((, *) = cos ( cos *i + sin ( cos *j + sin *k, (30)

where i, j, and k are unit base vectors of the global Cartesian coordinate system. Thus, the optimization problem becomes

min
(,*

||d|| = min
(,*

||ŜA−B(c((, *))||. (31)

In implementing the LM algorithm, a finite difference approximation of Jacobian matrix is employed instead of using
directly the analytical solution in order to achieve higher implementation and computational efficiency. It is worth noting
that Equation (29) is fulfilled when Equation (28) reaches a global minimum.45 In solving the optimization problem, the
following condition will be checked at each iteration,

d · c > 0. (32)

If this condition is true, the particles are not contacting, referring to the case in Figure 11B. Therefore, we can rule out
the consideration of current particle-particle pair and terminate the optimization.
Two important stop criteria are given to guide the convergence of the LM optimization as follows:

|d · c| > (1 − !l)||d||, (33a)

√
(Δ()2 + (Δ*)2 < !m, (33b)

where Δ( and Δ* are the searching steps in the parameter space and !l and !m are parameters controlling the accuracy.
The penetration depth d searched by the LM algorithm is updated as |d · c|c.
The LM optimization presented above has a good performance of convergence. Typically, less than 10 iterations are

required to achieve a good convergence for general cases. However, special attention should be paid to two extreme cases
where the optimization of LMmay fail or become significantly slow to converge. One occurs when the computed contact
point from one particle surface is outside the other particle, and the other extreme case is that the LM converges with
extremely small steps (eg, 10−5 rad for very flat face-to-face contacts). To handle these two issues possibly encountered in
the proposed approach, the GJK algorithm49 is adopted. We coin a name of the proposed approach as a hybrid approach
of LM and GJK algorithms.
The GJK algorithm is an efficient algorithm for contact detection of convex bodies and has been popularly applied in

computer games and graphic simulations.59 The general GJK algorithm is used to test whether two convex bodies intersect
or not by constructing a sequence of simplexes within the Minkowski difference, C = A − B, of the given two bodies. A
support function and a simplex are the key ingredients of the GJK algorithm. With the help of a support function, the
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FIGURE 11 Two-dimensional schema-
tic of the optimization solving for A,
contacting and B, noncontacting particle-
particle pairs [Colour figure can be viewed
at wileyonlinelibrary.com]

FIGURE 12 Two-dimensional illus-
tration of Gilbert-Johnson-Keerthi (GJK)
iterations for Minkowski difference
enclosing the origin [Colour figure can
be viewed at wileyonlinelibrary.com]

Minkowski difference can be readily computed for a given searching direction. A simplex has at most four vertices located
on the boundary of Minkowski difference C, and it can be a point, a line segment, a triangle in 2D, or a tetrahedron in 3D.
The kernel of the GJK algorithm is to iteratively find a point nearer the origin on the updated simplex. A brief description
on how the GJK algorithm works is given as follows. In each iteration, given a searching direction vi, a support point ci
can be found via the supporting function ŜA−B(−vi), which is added to the previous simplex for updating the simplex Ci.
Taking a two-dimensional case shown in Figure 12 as an example, an arbitrary searching direction v1 is given to yield the
initial simplex C1 = {c1} at the first iteration in Figure 12A; at the second iteration i = 2 in Figure 12B, the searching
direction is updated as v2, the direction giving the shortest distance between the previous simplexC1 and the origin. Then,
an updated simplex C2 = {c1, c2} is obtained. The iteration ends up with the origin being enclosed by the simplex for two
contacting particles, as shown in Figure 12C. In general, the GJK algorithm converges fast to find a simplex enclosing
the origin for the Minkowski difference C enclosing the origin, ie, for two contacting particles. However, the GJK does
not provide the shortest distance directly for two contacting particles. Often, an algorithm called expanding-polytope
algorithm (EPA)59 is adopted to iteratively approximate the shortest distance in a similar manner as the GJK. The EPA is,
however, computationally expensive, which will not be considered in this study.
Given that particle penetration encountered in general DEM simulations is sufficiently small—a precondition of the

“soft-ball” approach in DEM—we propose a scheme of shape erosion to help for computing penetration depth. As shown
in Figure 13A, the particle shape is eroded inward for a small distance 0r along the inward normal of particle surface
so that the eroded shapes of two contacting particles are separated, referring to Figure 13B. In this way, the penetration
depth d′ can be obtained by the GJK algorithm for two noncontacting particles in a similar manner as that for contacting
particles (see Figure 14). The GJK algorithm terminates when achieving a certain accuracy, ie,

||vi||2 − vi · ci < !c||vi||2, (34)

where vi is the point within the simplex Ci that is closest to the origin. As a result, the two closest points: pA′ and pB′ , from
the two eroded particle surfaces are available, and the contact points pA and pB are given as

pA = pA
′
+ 0Ar c, pB = pB

′
− 0Br c, (35)
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FIGURE 13 Two-dimensional
schematic of A, shape erosion with a small
disk (sphere in 3D) and B, two contacting
particles with eroded shapes [Colour figure
can be viewed at wileyonlinelibrary.com]

FIGURE 14 Two-dimensional illustration of Gilbert-Johnson-
Keerthi (GJK) iterations for Minkowski difference not enclosing
the origin [Colour figure can be viewed at wileyonlinelibrary.com]

with
c = − v

||v|| , (36)

where 0Ar and 0Br are erosion distances of the two particles A and B, respectively; c is contact normal; and v is the point
closest to the origin from the latest simplex.
With Equations (30) and (36), the parameters ( and * in the LM can be readily switched from/to the parameter v in

the GJK, resulting in a seamless combination of these two algorithms. Moreover, the contact normal c in the current
frame can be cached and taken as the initial guess for the next frame during the course of a DEM simulation, which saves
computational time.

5.3.3 Validation and efficiency analysis
In this section, the validation of the proposed hybrid approach of LM and GJK is conducted, followed by some efficiency
analysis and discussion. Two kinds of axis-wise descriptors of particle shape, namely, elongation (lx, ly, lz) and eccentricity
(ex, ey, ez), are introduced to assist generating random particle pairs. They are defined along each major axis in such a
manner that

r+x = lxex, r−x = lx(1 − ex), r+" = l"e", r−" = l"(1 − e"), r+z = lzez, r−z = lz(1 − ez). (37)
Three groups of particle shape parameters are listed in Table 1, in which each shape parameter is randomly selected

from a given interval. A random particle pair with random shapes but a specified penetration depth d is generated by the
following protocol: (a) particle A is located at the origin without rotation (ie, the rotation matrix is identity matrix); (b) a
contact normal c is randomly set so that the contact point pA from particle A is determined by the support function ŜA(c),



2160 ZHAO AND ZHAO

TABLE 1 Three groups of particle shape
parameters

Group Shape !1, !2 Elongation lx, ly, lz Eccentricity ex, ey, ez
Group 1 Poly-superellipsoid [0.4, 1.6] [0.5, 2.0] [0.2, 0.8]
Group 2 Superellipsoid [0.4, 1.6] [0.5, 2.0] [0.5, 0.5]
Group 3 Ellipsoid [1.0, 1.0] [0.5, 2.0] [0.5, 0.5]

FIGURE 15 Probability distribution function (PDF) of number of
iterations needing to exclude two noncontacting particles [Colour
figure can be viewed at wileyonlinelibrary.com]

and the contact point pB from particle B can be computed by pB = pA − dc; and (c) with a random rotation matrix, the
position of particle B is readily obtained by Equation (22).
The performance of the proposed hybrid approach in handling noncontacting particles is examined here. For each of the

three groups of particle shape parameters, 104 random particle pairs are generated with the penetration depth d randomly
selected from [−0.25, 0] (the negative penetration depth means a real distance between the two noncontacting particles).
The number of iterations needing to exclude a particle pair is recorded, and the corresponding probability distribution
functions (PDFs) are shown in Figure 15 for the three groups. It is worth noting that the AABB combinedwith a bounding
sphere with a radius of max{r+x , r−x , r+" , r−" , r+z , r−z } is utilized to possibly rule out these noncontacting particle pairs but
its contribution to the exclusion of particle pairs is not included in the PDFs. As can be seen in Figure 15, the proposed
hybrid approach is efficient in ruling out a non contacting particle pair, where the probabilities of exclusion needing zero
iteration are 0.657, 0.684, and 0.695, respectively, for groups 1, 2, and 3. It is also evident that almost 97% of particle pairs
can be excluded within only three iterations. Moreover, such a good performance suggests that the initial guess of contact
normal using the mass center-joining vector is reasonable.
Exact contact detection for contacting particle pairs is much more computationally expensive. Another three groups of

tests with the aforementioned random particle pairs but different penetration depth d randomly selected from [0, 0.01] are
performed. The parameters for convergence in Equations (33) and (34) are set by trial and error as follows: !l = 0.05, !m =
1×10−5, !c = 1×10−3 (bywhich a good performance in convergence and accuracy is reached as analyzed in the following).
In order to quantify the optimization error, two dimensionless quantities, namely, relative error of contact point (cp and
relative error of penetration depth (d, are introduced as

(cp = ||p′c − pc||∕r, (d = |d′ − d|∕d, (38)

where p′c and pc are the solved contact point and the accurate contact point, respectively; r is the average of
r+x , r−x , r+" , r−" , r+z , r−z of the two contacting particles; and d′ and d are the solved penetration depth and the accurate penetra-
tion depth, respectively. Cumulative distribution functions (CDFs) of the relative errors (cp and (d are shown in Figure 16
for the three groups of tests. It can be seen that almost 95% of solutions have a relative error of less than 1 × 10−3 for both
contact point and penetration depth. Such a negligibly small relative error is acceptable for general DEM simulations.
Besides, the irregularity in particle shape is likely to increase the optimization error, but on average, it is insignificant.
Moreover, the computational cost in terms of number of iterations is recorded, referring to Figure 17A. It appears that
only five iterations are needed on average for achieving the aforementioned accuracy. The computationally most heavy
part of the hybrid approach is the frequent call of the support function. In each iteration, the number of calls of the
support function is dynamic. Thus, for a better estimation of computational cost, the number of calls of the support func-
tion is tracked. As shown in Figure 17B, the cumulative distribution functions (CDFs) of number of calls for the support
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FIGURE 16 Cumulative
distribution function (CDF) of
relative error of A, contact point
(cp and B, penetration depth (d
[Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 17 A, Probability
distribution function (PDF) of
number of iterations and B,
cumulative distribution function
(CDF) of number of calls for the
support function after
convergence [Colour figure can
be viewed at
wileyonlinelibrary.com]

FIGURE 18 Example of two particles
with a flat contact: A, the Levenberg-
Marquardt (LM) algorithm fails due to
slow convergence after 23 calls of the
support function; B, the Gilbert-
Johnson-Keerthi (GJK) algorithm
succeeds after 12 calls of the support
function. Note that the initial guess of
the contact normal is the vector joining
the mass centers of the two particles
[Colour figure can be viewed at
wileyonlinelibrary.com]

function rapidly increase for the number of calls between 10 and 20, suggesting that the support function is usually called
in such a frequency. Besides, it also can be seen that almost 95% of particle pairs need at most 30 calls of the support func-
tion. In summary, it can be said that the average number of calls of the support function does not exceed 20. This average
upper bound of computational cost is helpful to compare the efficiency between the proposed hybrid approach and oth-
ers, eg, the clumped technique adopted in multisphere model. However, it is worth mentioning that the performance can
be significantly improved with the cached contact normal from the previous frame, which is implemented in our model
indeed.
The LM algorithm with a scheme of dimensionality reduction is generally more efficient than the GJK algorithm with

a scheme of shape erosion for searching the penetration depth of two contacting particles. However, for some special
cases, eg, a flat face-face contact, as shown in Figure 18, the LM algorithm gets stuck into an awkward situation with
small searching steps in the parameter space and performs not so well as expected in comparison with the GJK algorithm.
However, the proposed hybrid approach of the LM and the GJK is highly robust and efficient. Benefiting from that both
LM and GJK are iterative algorithms, the contact normal c at the previous DEM time step can be taken as the searching
start of the current time step. Since the time step is usually sufficiently small, the particle motion between two time steps
is so small that the current contact normal experiences a rather small deviation from the previous one. Thus, taking the
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FIGURE 19 Five hundred poly-superellipsoids falling under gravity: A, initial packing, B, after 15 000 time steps, C, after 20 000 time
steps, D, after 35 000 time steps. Note: The box is not shown for a better visualization [Colour figure can be viewed at wileyonlinelibrary.com]

previous contact normal as a reasonable initial guess of the current one for optimization can achieve a better performance
in general.

6 SIMULATIONS

The proposed poly-superellipsoid-based method has been implemented in an open-source DEM code the authors devel-
oped, SudoDEM,17,18,60 inheriting a basic framework of YADE.61 In this section, several examples are employed to
demonstrate the robustness and efficiency of the proposed methods in conjunction with the hybrid contact detection
algorithm in solving problems relevant to granularmedia. The cases we choose include granular packing of non-spherical
particles and quasistatic triaxial compression tests under both dynamic and quasistatic conditions.

6.1 Granular packing of non-spherical particles
Random packing of granular materials may find many useful engineering and industrial applications. A packing of gran-
ular materials can be formed under different conditions, for example, free falling under gravity, tapping, and vibration.
A simulation of granular packing with poly-superellipsoidal particles through free falling into a cubic box (1 × 1 × 4 m)
under gravity is performed using the proposed method in previous sections. In the simulation, 500 particles with random
orientations are first positioned at a 5-by-5-by-20 grid shown in Figure 19A, where the parameters of particle shape are
randomly selected as !1, !2 ∈ [0.4, 1.6], lx = 0.1 m, ly, lz ∈ [0.02, 0.1] m, ex, ey, ez ∈ [0.2, 0.8]. The material properties of
particles are set as follows: the material density is set to 2650 kg/m3; the normal and tangential contact stiffnesses are
set to 1 × 105 and 7 × 104 N/m, and the coefficient of friction is set to 0.1. All walls of the box are frictionless and have
a stiffness one order of magnitude larger than that of the particles. During the simulation, a damping coefficient of 0.3
and a time step of 5 × 10−5 seconds are considered. Note that the aforementioned numerical parameters do matter for
the internal structure (or fabric) of granular packing, which deserve a systematic calibration if one wishes to prepare a
sample comparable with experiments. Nevertheless, the focus is placed herein upon demonstrating the versatility of the
proposed approach and the robustness of the corresponding contact algorithms. Thus, the chosen values of parameters
have been based on our experience only.
Figure 19 shows the simulation after 0, 15 000, 25 000, and 35 000 time steps. During the course of packing under gravity,

the free particles impact the top of a packing sequentially, and particles may collide with their neighbors (particles or
walls) and bounce back and forth. Simulations of free falling of particles have been also adopted by other researchers40,41
to test the robustness of their DEM algorithms in terms of numerical convergence. The variation of the energy of particles
during packing is recorded in Figure 20, where the kinetic energy is∑(miv2i ∕2+ Ii"2

i ∕2) and the total mechanical energy
includes the kinetic energy and the gravitational potential energy defined as ∑(mighi) (h is the height of particle mass
center from the box bottom).
Another popular approach for generating random packing in DEM is the so-called expansion technique akin to the

Lubachevsky-Stillinger algorithm for hard particles.62 In thismethod, the particles are gradually expandedwith a growing
rate in the absence of gravitational force. Another simulation of random packing is performed as follows based on the
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FIGURE 20 Variations of kinetic, potential, and total energy of
particles during the packing [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 21 A, Initial packing
with randomly positioned
particles; B, packing after
particles expand to the target
size; C, packing after isotropic
consolidation; D, probability
distribution function (PDF) of
coordination number within the
packing in (C) [Colour figure
can be viewed at
wileyonlinelibrary.com]

expansion method to further assess the robustness of the proposed algorithms. All numerical parameters have the same
values as the free-falling simulation.
(a) First, 5000 poly-superellipsoids with random shapes are generated and randomly positionedwithin such a cubic box

with adequate space to hold them (a void ratio of 0.65 is selected here for a relatively loose packing). There may be some
exaggerated or even unreasonable intersections for some particle pairs in the initial packing. This issue can be handled
by the following procedure. Prior to performing DEM cycling, all particles are shrunk to their half sizes for a sparse
initial packing as shown in Figure 21A. Next, the particles expand with a growing rate until reaching their origin sizes
(Figure 21B). During the course of particle expansion, particle velocities are periodically reset to 0 to avoid excessively
large velocities due to possible significant penetrations and collisions.
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(b) The packing is further subjected to more DEM cycles to reach a state of mechanical equilibrium. Most often, a con-
fining stress is applied to an assembly to achieve a desired isotropic or anisotropic stress state (similar to consolidation in
laboratory). This can be done through the so-called numerical stress-controlled servo mechanism, ie, adjusting positions
of the confining walls to maintain a constant stress on the boundary until a state of mechanical equilibrium is reached.
Figure 21C shows a consolidated packing with a confining stress of 10 kPa. The corresponding void ratio and mean coor-
dination number are 0.501 and 7.834, respectively. And the probability distribution of coordination number is shown in
Figure 21D.
It is also instructive to examine how efficient the proposed method as a whole performs for the entire simulation,

though the efficiency of contact detection for a single particle pair has been investigated in Section 5.3.3. On the basis
of the consolidated packing shown in Figure 21C, 1000 time steps are executed, and the needed computational time is
recorded every 100 time steps. To benchmark the computational time of the proposed method, another dense packing
of 5000 conventional spherical particles with radii uniformly distributed in [0.02, 0.1] is prepared according to the same
procedure as for the poly-superellipsoids. The two packings have a comparable mean coordination number (7.788 for
the sphere packing). Note that the contact detection for the spheres is performed directly via computing the Euclidean
distance between two particle centers rather than using our proposed general algorithm for poly-superellipsoids. Sim-
ulations run with a single thread on an Ubuntu 18.04 desktop with an Intel i7-6700 CPU (clock speed: 3.40 GHz). The
computational time averaged among all interactions over every 100 time steps is plotted in Figure 22A. It can be seen
that the simulation using the proposed poly-superellipsoid-based approach is on the order of six to seven times more
expensive than that using the conventional sphere elements. However, it is worth pointing out that our approach is more
efficient for modeling complex shapes than the clumped-spheres approach commonly used in DEM. Furthermore, sim-
ulations based on the proposed approach can be readily speed up via multithread programming using openMP, and the
speedup is shown in the inset of Figure 22A. As is shown, the performance of speedup is dependent on the total number
of particles and contacts, which is not linear. Figure 22B shows the weight of computation time by different DEM pro-
cesses for poly-superellipsoids and spheres with a single thread. It can be seen that the contact computation (CC) takes
an overwhelming fraction of DEM running time. The weight of computation time by CC increases from approximate 90%
of spheres to 97% of poly-superellipsoids, and the weight of computation time by integration of particle motionmaintains
almost constant. Interestingly, the weight of computation time by broad phase of contact detection shows a decrease trend
with DEM cycling. One direct explanation is that the neighbor lists are well established after certain DEM cycles, so that
it becomes more efficient to traverse particles in the neighbor lists instead of the whole assembly when conducting broad
phase of contact detection.

FIGURE 22 A, The
single-thread computation time
averaged among all interactions
over every 100 time steps for
poly-superellipsoids and
spheres; Inset: speedup of
simulations with multithreads
parallelized by OpenMP; B, the
weight of computation time by
different discrete element
method (DEM) processes for
poly-superellipsoids and spheres
with a single thread, BP: broad
phase for contact detection; CC:
contact computation including
the narrow phase for contact
detection and computation of
contact geometry and forces; Int.:
integration of particle motion
[Colour figure can be viewed at
wileyonlinelibrary.com]
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6.2 Triaxial compression of non-spherical particles
Four cubic specimens containing particles of different shapes, ie, spheres, ellipsoids, superellipsoids, and
poly-superellipsoids, with shape parameters randomly selected in the range listed in Table 2, are prepared after consoli-
dation at a confining stress of 100 kPa. Each specimen consists of 5000 particles with a grain size distribution similar to
Ottawa 20 to 30 sands shown in Figure 23, where the equivalent diameter stands for the diameter of a sphere with an
identical volume. The void ratio of a specimen can be controlled by setting different interparticle coefficient of friction
/p during the consolidation.7 It is assumed that the packing with frictionless particles may reach the densest state. We
note here that this assumption is reasonable for making the results comparable, even though the approach is not consis-
tent with the standard laboratory tests. Without interparticle friction, three dense specimens of spheres, ellipsoids, and
superellipsoids are prepared with a void ratio of 0.633, 0.583, and 0.481, respectively, while a medium-dense specimen of
poly-superellipsoids is prepared with frictional particles, /p = 0.2, with a void ratio of 0.502. The material properties are
set as follows60: the normal contact stiffness kn and the tangential contact stiffness kt are set as kn∕r̄ = kt∕r̄ = 100 MPa (r̄
is the average radius of particles); /p is set to 0.3 during shearing, and the mass density 2650 kg/m3 is scaled up six orders
of magnitude to obtained a scaled time step of 1 × 10−5 seconds. During triaxial compression, the top and bottom walls
move toward at a constant loading strain rate of 0.01/s (which is sufficiently small to ensure quasistatic shear60), whereas
the other four side walls move individually to maintain a constant confining stress 20 of 100 kPa with the stress-control
servo as mentioned above. Compression is terminated at a relative large level of axial strain of 40%, at which a critical
state is well observed. Each simulation of the triaxial test runs with a single thread. The simulation for the spherical
sample took approximately 2.5 hours, while that for the poly-superellipsoidal, sample took 15 hours or so. Figure 24
shows the configurations of the specimen for poly-superellipsoids at the initial and final states. More details about the
triaxial compression procedure are presented in our previous work.7,60
The volume-averaged stress tensor63 calculated frommicroscopic quantities is adopted to characterize the macroscopic

mechanical response of a granular material during shearing, given as

2i. =
1
V

∑
c∈V

+ c
i l
c
. , (39)

where V is the total volume of the assembly, f c is the contact force at the contact c, and lc is the branch vector joining the
the centers of the two contacting particles at contact c. On the basis of 2ij, it is ready to obtain the mean stress p = 2ii∕3
and the deviatoric stress q =

√
32′

i.2
′
i.∕2, where 2′

i. is the deviatoric part of stress tensor 2ij. The granular deformation
is quantified by axial strain !z and volumetric strain !v, which can be approximately calculated from the positions of the

Particle Shape !1, !2 Elongation Ratio ly∕lx, lz∕lx Eccentricity ex, ey, ez
Poly-superellipsoids [0.5, 1.4] [1.0, 1.5] [0.25, 0.75]
Superellipsoids [0.5, 1.4] [1.0, 1.5] [0.5, 0.5]
Ellipsoids [1.0, 1.0] [1.0, 1.5] [0.5, 0.5]
Spheres [1.0, 1.0] [1.0, 1.0] [0.5, 0.5]

TABLE 2 Particle shape parameters for
triaxial compression simulations

FIGURE 23 Grain size distribution of numerical specimens
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FIGURE 24 Configurations of the
specimen with poly-superellipsoids at A,
the initial and B, the final states. Color is
for tracking particle movement
intuitively [Colour figure can be viewed
at wileyonlinelibrary.com]

FIGURE 25 Evolution of A,
deviatoric stress ratio q∕p and B,
volumetric strain for specimens
with different particle shapes
during shearing [Colour figure
can be viewed at
wileyonlinelibrary.com]

boundary walls, ie, !z = ln(H0∕H), !v = ln(V0∕V), where H and V are the height and volume of the specimen during
shearing, respectively, and H0 and V0 are their initial values before shear. Negative values of volumetric strain indicate
dilation.
Figure 25 shows the evolution of deviatoric stress ratio q∕p and the volumetric strain for the four specimens with dif-

ferent particle shapes during shearing. It can be seen that all specimens reach their corresponding critical states in a
strain-softening manner with volumetric dilatancy, similar to the behaviors of dense sands well observed in laboratory.
For the three specimens with spheres, ellipsoids, and superellipsoids, the deviatoric stress ratio increases with increasing
complexity in particle shape shown in Figure 25A. The specimen prepared with superellipsoids exhibits the largest shear
strength among all four specimens. However, larger shear strength does not always correspond to more significant dila-
tancy due to irregularity in particle shape shown in Figure 25B. For example, the specimen of ellipsoids has a considerably
enhanced shear strength but relatively lower dilatancy as compared with the specimen of spheres. Moreover, for the spec-
imen of poly-superellipsoids, its peak deviatoric stress ratio is slightly lower than that of the specimen of superellipsoids,
which may be attributed to a larger void ratio for the poly-superellipsoid specimen at the initial state compared with the
latter. Nevertheless, it is observed that the steady-state deviatoric stress ratio for the specimen with poly-superellipsoids
is larger than that for the specimen with superellipsoids, suggesting that DEM modeling of granular media has to take
into account of the influence of shape (here, the asymmetric feature characterized by poly-superellipsoids provides addi-
tional interlocking among particles compared with the symmetric superellipsoids) in addition to initial void ratio, since
the initial fabric structure of granular materials may be greatly affected by the constituent particle shape, which further
affects the mechanical granular responses.
It is of interest to further investigate the mechanical responses of these specimens from a microscopic point of view. As

a demonstration, emphasis is placed here upon two fabric-and-stress-related quantities, namely, the normal contact force
and the coordination number. Normal contact force has beenwidely regarded as the dominant contributor in undertaking
the deviatoric load.7,17 Coordination number is one of the most commonly used important parameters for characterizing
granular fabric and is found sensitive to particle shape.18 Figure 26 shows the evolutions of mean normal contact force
andmean coordination number for the four specimens during shearing. It can be seen that themean normal contact force
exhibits a mild strain-softening trend after the peak, similar to the observation on the deviatoric stress ratio in Figure 25A.
However, the mean normal contact force does not show an obvious correlation with complexity of particle shape. For
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FIGURE 26 Evolution of A,
mean normal contact force and
B, mean coordination number
for specimens with different
particle shapes during shearing
[Colour figure can be viewed at
wileyonlinelibrary.com]

example, the specimen with spheres has the smallest mean normal contact force because of relatively small stress within
the assembly, while the specimen with poly-superellipsoids has relatively large stress but small mean normal contact
force because of relatively large coordination number. Moreover, the initial mean coordination number increases with
increasing complexity in particle shape for the three specimens with the densest states, as shown in Figure 26B. It is also
evident that the critical mean coordination number is strongly dependent on particle shape, which significantly affects
granular deformation (eg, larger drop in mean coordination number corresponding to larger dilatancy). In addition, the
specimen of poly-superellipsoids has a much larger critical coordination number than that of superellipsoids, which to
some extent reflects the interlocking enhanced by asymmetry of particles. Further investigation of particle shape effect on
the mechanical responses of granular materials is beyond the scope of this paper, which would be conducted as a future
study.

7 CONCLUSIONS

We have proposed new method using poly-superellipsoids for efficient three-dimensional discrete element modeling of
granularmedia in consideration of realistic grainmorphology. A robustmathematical description of a poly-superellipsoid
needs only eight shape parameters to yield a broad range of convex particle shapes and meanwhile significant computer
memory savings compared with other technique, eg, NURBS.34 The new poly-superellipsoid-based approach is capable
of capturing key shape features of realistic granular grains such as sands by fitting CT image data of grains or other
possible approaches. On the basis of a common normal concept, novel computational algorithms for contact detection of
poly-superellipsoids in DEMmodeling have been proposed and further demonstrated to be efficient and straightforward
for implementation. The particle-wall contact can be solved efficiently with just one call of the support function, while the
particle-particle contact is solved in an iterativemanner via a hybrid approach of the LMalgorithmand theGJK algorithm.
Numerical simulations of granular packing and triaxial compression tests further prove that the proposed hybrid of LM
and GJK algorithm is generally valid, robust, and efficient for DEM modeling of poly-superellipsoidal packing. In the
demonstrated examples, a linear-spring contact model has been employed for calculation of contact forces. However,
other nonlinear contactmodels, eg, theHertz-Mindlinmodel, can be readily implemented aswell for poly-superellipsoids,
according to a similar procedure for superellipsoids in our previous work.60
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