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Abstract

In this paper, the limit theorems proposed by Drucker and co-workers are reformulated to address a class of gradient-
dependent elastoplastic geomaterials. The gradient effects are accounted for by incorporating strain gradients and their con-
jugate higher-order stresses into the constitutive descriptions. Gradient-dependent equilibrium equations and higher-order
boundary conditions are defined for both statically admissible and kinematically admissible states, and the associated lower
bound and upper bound theories are recast for the gradient-enhanced limit theorems. A generalised Drucker–Prager yield
criterion, that includes the gradient influence on the deviatoric stress, is proposed and then employed to investigate the
collapse loads for soil layers under conditions of generalised plane-strain, simple shear and uniaxial compression. The
corresponding lower and upper bounds are found for these problems. It is demonstrated that the predicted collapse bounds
are generally dependent on both the conventional and gradient properties, with normalised length scale(s) being present in
the results. This feature enables us to give physically reasonable interpretations for size effects and shear banding during
material collapse. Comparisons are also made between the gradient-dependent bounds and those obtained through conven-
tional plasticity theories. Influences of model parameters and sample dimensions on the predictions are also discussed. It is
shown that the proposed gradient-dependent limit theorems can be used to provide physically meaningful predictions for
general geotechnical applications.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the pioneering work of Drucker et al. (1952) and Drucker and Prager (1952), limit analysis has
become a powerful tool for predicting the collapse load of practical problems. Conventional limit theorems,
including the upper bound and lower bound theorems, are founded on the key assumption of normality
between the yield surface and the plastic strain rate vector. Accordingly, restricted forms of the limit theorems
can be developed for rigid perfectly-plastic and elastic perfectly-plastic materials. Conventional limit theorems
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make use of classical plasticity theories in which only the first order stresses and strains are considered in the
constitutive descriptions. For various applications involving collapse, however, higher-order gradient terms
have proved to be important and ought to be included in the constitutive relations. Theories of strain gradient
plasticity have thus been developed during the past two decades, and were originally used to interpret the test
results for metallic materials on the microscale. In these theories, higher-order gradient terms are included in
the constitutive equations, together with coefficients that represent the length-scale measures of microstruc-
tural deformations. The internal length scale of the deformation field is particularly important when interpret-
ing the qualitative and quantitative influence of size effects and strain localisation on collapse behaviour (see,
e.g., Chambon et al., 2004 for a recent review of gradient theories).

Compared with metals, geomaterials usually exhibit more complicated mechanical behaviour such as non-
linear elasticity, isotropic hardening, frictional-cohesive strength and dilatancy. In addition to these attributes,
they also display gradient-dependent characteristics. For example, experimental observations of localisation
phenomena in granular solids have found that the deformed material usually has a strong spatial density var-
iation. Indeed, the formation of shear bands in sands is always characterised by a zone of material with an
increased porosity (see, e.g., Vardoulakis and Graf, 1985). In such a region, the strong spatial variation of
the material properties suggests that higher gradients of the appropriate physical quantities should be of vital
importance. In addition, the existence of micro-structures in geomaterials (i.e., grains, micro-voids, micro-
cracks and/or inter-particle contact and friction) may directly or indirectly influence many other features of
their behaviour, such as the well-known size effect on material strength. Gradient theories with explicit internal
length scales are thus appropriate to link the microstructure of these materials to their macroscopic response.
Indeed, a number of gradient-enhanced models have been developed for geomaterials and applied with suc-
cess. A recent review of the gradient theories developed for geomaterials can be found in Zhao et al. (2005)
and Zhao and Sheng (2005).

The features associated with geomaterials provide the motivation to reformulate the conventional limit the-
orems in the framework of strain gradient plasticity. This motivation is enhanced by the fact that the limit
theorems always deal with failure and/or collapse states in the material where gradient effects are mostly pro-
nounced. To the authors’ knowledge, the derivation of limit theorems for gradient-dependent elastoplastic
geomaterials, and their application to predict collapse, has received little attention in the literature. Even
though extremum principles for strain gradient theories have been presented using a number of variational
forms (e.g., Smyshlyzev and Fleck, 1996; Fleck and Hutchinson, 1993), these studies focused on the effective
properties of polycrystals and are not applicable to geomaterials.

This paper generalises the conventional limit theorems to incorporate strain gradient plasticity, and uses
these theorems to predict gradient-dependent lower and upper bound collapse loads for some generalised
plane strain problems. The strain gradient theory used builds on the work of Toupin (1962) and Mindlin
(1964, 1965). as well as the later contributions of Germain (1973) and Fleck and Hutchinson (1993, 1997).
The definition of collapse is assumed to be the same as in conventional plasticity theory; i.e. collapse happens
when appreciable changes in the geometry of a structure occur at constant load.

The paper is organised as follows. The strain gradient plasticity used in the study is first introduced. After
the stability conditions, normality rule and dissipation behaviour for a gradient-dependent elastoplastic mate-
rial are recast; the limit collapse state is mathematically described, together with the admissible states and the
associated lower and upper bound theorems. Next, the bound theorems so obtained are applied to a class of
generalised plane strain problems. A generalised Drucker–Prager yield criterion is also developed to account
for the influence of hydrostatic and higher-order stresses on the yielding of geomaterials. Finally, gradient-
dependent layers under generalised plane strain, simple shear and uniaxial compression conditions are inves-
tigated, and the corresponding lower and upper bounds on the applied loads are found.

2. Strain gradient plasticity and collapse

2.1. Strain gradient plasticity

The strain gradient plasticity theory employed here closely follows the linear elasticity strain gradient the-
ory of Toupin (1962) and Mindlin (1964, 1965), as well as the generalised J2 plasticity theory suggested by
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Fleck and Hutchinson (1993, 1997). The strains and strain gradients are denoted by a second-order symmetric
strain tensor e and a third-order symmetric strain gradient tensor g, respectively. In Cartesian coordinates,
they are related to the displacement u as follows:
eij ¼ ðui;j þ uj;iÞ=2

gijk ¼ ðuk;ij þ uk;jiÞ=2

(
ð1Þ
where the strain gradient tensor is symmetric about its first two indices: gijk = gjik. It is further assumed that the
work-conjugates to e and g are, respectively, the Cauchy stresses r and the higher-order stresses (or coupled

stresses) s. That is to say, r :de and s ..
.
dg constitute the work per unit volume of the material for any virtual

deformation de and virtual deformation gradient dg. Note that s is also a third-order tensor symmetric about
its first two indices.

Following the conventional limit theorems, an elastic perfectly-plastic constitutive relation is assumed. This
relation includes gradients effects and satisfies a generalised yield function of the form:
f ¼ f ðrij; sijkÞ ¼ 0 ð2Þ

In Eq. (2), plastic flow can only occur when the stresses satisfy f = 0, while f < 0 denotes any other state of
stress which lies within the elastic range. It is further assumed that the viscosity and inertia effects can be ne-
glected, and that the strain rates and strain gradient rates can be decomposed into elastic and plastic compo-
nents, respectively, according to:
_eij ¼ _ee
ij þ _ep

ij; _gijk ¼ _ge
ijk þ _gp

ijk ð3Þ
A generalised form of Hooke’s law is assumed to relate the elastic parts _ee
ij and _ge

ijk to the Cauchy stress rates
and higher-order stress rates so that:
_rij ¼ Dijkl _e
e
kl; _sijk ¼ Mijkpqr _ge

pqr ð4Þ
where Dijkl and Mijkpqr are, respectively, the conventional elastic stiffness and higher-order elastic stiffness ten-
sors. For an isotropic linear material that will be treated in this paper, Eq. (4) is assumed to have the same
form as that proposed by Mindlin (1965) (see also Appendix A). The gradient-dependent constitutive relations
are assumed to be analogous to the conventional elastic perfectly-plastic relations, so that both the first order
and higher order stress–strain relations are elastic perfectly-plastic. For a sample in simple tension, Fig. 1
shows the stress–strain and higher order stress–strain gradient relations.

2.2. Rephrasing of stability criterion, normality rule and rate of dissipation

In the presence of gradient terms, the stability criterion, normality rule and characteristics of the rate of the
dissipation function (see, Drucker et al., 1952) have to be rephrased. First, the Drucker stability criterion
requires the gradient-dependent material to satisfy the following conditions:
_rij _e
p
ij þ _sijk _gp

ijk P 0 ð5Þ
o ( )ηε ,

( )τσ,

Fig. 1. Schematic constitutive relations of gradient-dependent elastic perfectly plasticity in simple tension.
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When defining the normality rule, it is assumed that the plastic strain rates and the plastic strain gradient rates
are both related to the stress state. The yield condition f = 0 presents a convex surface in the compound stress
space of Cauchy and higher-order stresses. Suppose the normality law applies and now consider a stress point
(rij,sijk) which satisfies f = 0. Any plastic rates for the strains and strain gradients, ð_ep

ij; _gp
ijkÞ, associated with

this stress state may be represented by a ray which lies in the outward normal direction to the yield surface
at the point (rij,sijk). In view of this, the following relations immediately hold:
_rij _e
p
ij ¼ 0; _sijk _gp

ijk ¼ 0 ð6Þ
It is further assumed that a homogeneous function Û exists such that the power dissipation during plastic flow
is Ûð_ep

ij; _gp
ijkÞ and for any safe state of stress ðrs

ij; s
s
ijkÞ,
ð _rs
ij _e

p
ij þ ss

ijk _gp
ijkÞ < Ûð_ep

ij; _gp
ijkÞ ð7Þ
Here we use the hat symbol ‘^’ over U to emphasise that a total dissipation potential for U might not exist as Û
can be non-integrable over time in some cases, for instance, where it is path-dependent. It is further supposed
that the Cauchy stress rij and the higher-order stress sijk are homogeneous of order zero in, respectively, the
components of the plastic strain rate and the plastic strain gradient rate. There is no dependence of rij on _gp

ijk,
nor sijk on _ep

ij. Then the sum ðrs
ij _e

p
ij þ ss

ijk _gp
ijkÞ is homogeneous of the first order in the compound space of the

components of plastic strain and strain gradients rates. As a result, at a compound stress point (rij,sijk), the
following conjugate relations will hold:
_ep
ij ¼ k̂

of
orij

; _gp
ijk ¼ k̂

of
osijk

for f ðrij; sijkÞ ¼ 0 ð8Þ
where k̂ is a non-negative multiplier. The reason for using the symbol ‘^’ instead of a dot for k̂ is the same as
mentioned before for Û.

In general, the dissipative stress space is different from the true stress space (see Collins, 2005). However, if
the two spaces coincide with each other, we may interpret the dissipation stresses as being identical to the true
stresses during the yielding of the material. In this case, provided Eq. (8) holds, the rate of dissipation function
takes the following form:
Û ¼ rij _e
p
ij þ sijk _gp

ijk ð9Þ
If the yield function defined in Eq. (2) is strictly convex, the Cauchy stress rij and higher-order stress sijk can be
uniquely determined for a given ð_ep

ij; _gp
ijkÞ. For a yield surface with corners or flat faces this uniqueness is lost,

but the rate of dissipation Û ¼ rij _e
p
ij þ sijk _gp

ijk can still be uniquely determined (Chen and Han, 1988).

2.3. Mathematical characterisation of collapse with gradient effects

As stated in Section 1, the physical definition of collapse for a gradient-dependent material remains the
same as for a conventional material. The mathematical description of collapse, however, requires some mod-
ifications. Consider a gradient-dependent material with volume V and surface S (as is depicted in Fig. 2).
Fig. 2. Boundary conditions for a gradient-dependent material body.
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Suppose the velocities are denoted by vi and the velocity gradients by vi,j, while the surface tractions are Ti and
the higher-order surface tractions (double tractions) are Ri. Let the body forces be denoted by Fi, with higher-
order body forces being neglected in this analysis. The external surface S of V may be divided into two parts:
Sr for static forces and Su for variable forces. In classical continuum theories, these two boundaries are usually
subject to prescribed tractions and velocities, respectively. Due to the introduction of the strain gradients and
the higher-order stress terms, extra conditions are required for both Sr and Su. The static force surface Sr is
further divided into two portions: ST for the part which is subject to conventional traction forces and SR for
the part which is subject to higher-order traction forces. Meanwhile, on the kinematic surface Su, not all com-
ponents of vi,j are independent of vi because, for a known vi, its surface gradient is also known. Hence, a total
of six independent displacement boundary conditions are generally required: e.g., the velocities vi, i = 1,2,3 as
well as their normal gradients along Su should be prescribed (see, also, Zhao et al., 2005). This is equivalent to
the following expression:
vk ¼ v0
k ; nlolvk ¼ _e0

k on Su ð10Þ
where nl is the unit outward normal vector on the surface Su, and olvk denotes the surface differentials of the
velocities which can be further decomposed into normal and tangential parts:
olvk ¼ nlnioivk þ ðdli � nlniÞoivk ð11Þ
Let
D ¼ nkok; Di ¼ ðdik � ninkÞok ð12Þ
where D denotes the normal differential, the unit normal vector nk is expressed in local coordinates, and Di is
the surface gradient operator. Eq. (11) may then be rewritten as:
oivj ¼ niDvj þ Divj ð13Þ
During the state of collapse, denoted by the superscript ‘c’, the applied load is assumed to be constant so that
the rates _F c

i vanish throughout V. The rates of surface tractions and coupled tractions, prescribed as _T c
i and _Rc

i ,
will also vanish, as do the surface velocities vc

i and their outward-normal gradients due to the definition of the
stress and higher order stress boundary conditions. Consequently, the following expressions hold
Z

s
ð _T c

i v
c
i þ _Rc

i Dvc
i Þ dS ¼ 0; and _F c

i ¼ 0 for some vc
i 6¼ 0 and Dvc

i 6¼ 0 ð14Þ
where the normal differential operator D is defined in Eq. (12).
In addition, the rate at which work is done for the gradient-dependent material during collapse may also be

derived. If the velocities vc
i are continuous and have continuous second-order derivatives, which enable the

existence of strains and strain gradients in the field, the principle of virtual work yields the following equation:
Z
s
ðT c

i v
c
i þ Rc

i nkokvc
i Þ dS þ

Z
V

F c
i v

c
i dV ¼

Z
V
ðrc

ij _e
c
ij þ sc

ijk _gc
ijkÞ dV ð15Þ
Note that the strain gradients contribute to the virtual work equation through the surface differentials of the
velocities, oivc

j .
In the above, we have disregarded boundary conditions involving traction rates, velocities and their gradi-

ents. This is a consequence of the constant load condition for a collapse state rather than a mere simplification
of the problem. As has been defined in the Section 1, a collapse state is one where appreciable changes in the
geometry of a structure occur at constant loads. To consider constant loads implies the temporal changes of
these loads can be neglected, and all rates and velocities in the problem can thus be disregarded. It is noted,
however, that in dealing with practical boundary value problems (BVPs) by either conventional or non-stan-
dard theories other than limit theory, such boundary conditions might be important and for some cases even
indispensable. In such cases, one needs to correctly identify as many boundary conditions as are necessary to
enable the BVP to be properly set up and solved.
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2.4. Admissible states and limit theorems for gradient-dependent materials

2.4.1. Statically admissible state and lower bound theorem

For a gradient-dependent material, the Cauchy and higher order stresses, rij and sijk, are assumed to be
continuous functions of the coordinates. A statically admissible state with gradient effects is defined as one
where the following three conditions are satisfied:
rik;i � sijk;ji þ F k ¼ 0 ðaÞ
niðrik � ojsijkÞ � DjðnisijkÞ þ ninjðDlnlÞsijk ¼ T k ðbÞ
ninjsijk ¼ Rk ðcÞ

8><>: ð16Þ
together with the yield criterion (2). Eq. (16a) states the conditions of equilibrium, while the other two equa-
tions reflect the boundary conditions for the surface tractions and higher order tractions, respectively. A de-
tailed derivation of these three equations may be found in Zhao et al. (2005). Note that the second equation
applies to ST where the components Ti of the surface traction are given, while the third equation applies to SR

where the components of the higher-order traction Ri are specified.
Note that the preceding definitions may be generalised to include stress fields with a finite number of dis-

continuities. On either side of such a stress discontinuity, the stresses must satisfy Eq. (16a). Moreover, if nd
i

denotes the unit vector normal to a discontinuity surface, equilibrium demands that the Cauchy and higher-
order stresses defined by:
T �k ¼ nd
i ðrik � ojsijkÞ � Djðnd

i sijkÞ þ nd
i nd

j ðDlnd
l Þsijk and R�k ¼ nd

i nd
j sijk ð17Þ
must have the same values on either side of the discontinuity (see, e.g., for a shear band, Zhao et al., 2005).
Note that the term rijnd

j , which must be continuous across a stress discontinuity in conventional limit analysis,
will not necessarily be continuous in the presence of the strain gradients and higher-order stresses.

As in conventional limit analysis, the lower bound theorem for a gradient-dependent material model fol-
lows from the computation of a statically admissible stress state. For a gradient-dependent material undergo-
ing small deformations, a statically admissible stress field is one which satisfies the equilibrium and traction
boundary conditions defined in Eq. (16), and nowhere violates the yield criterion (2). Any field of Cauchy
and higher-order stresses that satisfies all the conditions of the lower bound theorem is referred to as a stat-
ically admissible compound stress field. The load supported by such a stress field gives a lower bound on the
collapse load for a gradient-dependent material model. A proof of this gradient-dependent lower-bound the-
orem is presented in Appendix B.

2.4.2. Kinematically admissible state and upper-bound theorem

A velocity field vi is said to be kinematically admissible if it satisfies the velocity boundary conditions and
the plastic flow rule defined by Eq. (8). Special discontinuous velocity fields are also permissible and useful in
certain circumstances. However, here we consider only a kinematically admissible velocity field for which the
velocity components are continuous throughout the material. Letting the superscript ‘k’ denote a kinemati-
cally admissible quantity, the strain rates and strain gradient rates are computed from the velocities as:
_ek
ij ¼

1

2
ðvk

i;j þ vk
j;iÞ; _gk

ijk ¼
1

2
ðvk

k;ij þ vk
k;jiÞ ð18Þ
If the power expended by the actual surface tractions, higher-order tractions and body forces equals or exceeds
the power dissipated by the plastic strains and strain gradient rates in a velocity field, a kinematically admis-
sible state of collapse is defined. For such a kinematically admissible collapse state, the following relation holds
in analogue to the corresponding conventional theorem (Chen and Han, 1988):
Z

s
ðT k

i vk
i þ Rk

i Dvk
i Þ dS þ

Z
V

F k
i vk

i dV P
Z

V
ŵð_ek

ij _gk
ijmÞ dV ð19Þ
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where the normal differential operator D is defined in Eq. (12) and ŵð_ek
ij; _gk

ijmÞ is a rate of dissipation density
which may be expressed in terms of plastic strain rates and plastic strain gradient rates according to:
Z

V
ŵð_ek

ij _gk
ijmÞ dV ¼

Z
V
ðrk

ij _e
k
ij þ sk

ijm _gk
ijmÞ dV ð20Þ
Again, the reason we use a hat over w here is similar to that for Û or k̂. The left-hand side of inequality (19)
defines the external power expended by the surface tractions, higher-order tractions and body forces, while the
right-hand side defines the rate of internal power dissipation. Inequality (19) is a statement of the upper bound

theorem for a gradient-dependent material. It implies that the loads Ti, Ri and Fi, found by equating the exter-
nal rate of work done to the internal power dissipation, will be not less than the actual limit load. A proof of
the above gradient-dependent upper-bound theorem is presented in Appendix C of this paper, in analogue to
that for the corresponding conventional theorem by Chen and Han (1988).

2.4.3. Connection with other extremum principles

The statically and kinematically admissible states defined in Sections 2.4.1 and 2.4.2 can be interpreted in
terms of related extremum principles. Indeed, the kinematically admissible state defined by Eq. (19) is equiv-
alent to a minimum principle proposed by Smyshlyzev and Fleck (1996) for gradient-dependent materials.
This principle states that the ‘true’ strain energy function W of the material minimises the functionaleW ð_eij; _gijmÞ (or alternatively eW ðviÞ) for any kinematically admissible field vi, subject to the boundary conditions
defined in Eq. (10). This implies that:
eW ðviÞ ¼
Z

V

~̂wð_eij; _gijkÞ dV P W ¼
Z

V
ŵð_e�ij; _g�ijkÞ dV ð21Þ
where ~̂wð_eij; _gijkÞ denotes a kinematically-admissible rate of strain energy density and ŵð_e�ij; _g�ijkÞ is the strain
energy density for the true velocity field with ð_e�ij; _g�ijkÞ being defined by the true velocity v�i . The proof of this

principle follows the standard procedures outlined by Fleck and Hutchinson (1993) or Smyshlyzev and Fleck
(1996). A key assumption here is that a convex strain energy function eW exists for any state of strain (eij,gijk)
generated by external loads on the body. If the true velocity v�i is further assumed to correspond to that for a
kinematically admissible collapse state, say vk

i , then the theorem expressed in Eq. (19) is equivalent to the min-
imum principle in Eq. (21).

The theory for a statically admissible state is also connected to the aforementioned minimum principle via a
conjugate relation. This takes the form of a complementary minimum principle, expressed in terms of the Cau-
chy and higher-order stresses, and states that a complementary energy density rate (stress potential) /̂ may be
introduced as a dual to the rate of strain energy density ŵ as (Smyshlyzev and Fleck, 1996):
/̂ðrij; sijkÞ ¼ sup
ð_e; _gÞ
frij _eij þ sijk _gijk � ŵð_eij; _gijkÞg ð22Þ
For a smooth and strictly convex function of ŵ, this complementary energy density rate function is also con-
vex with respect to (rij,sijk). Integrating it over the volume V of the body gives the complementary energy W as:
W ¼
Z

V
/̂ðrij; sijkÞ dV ð23Þ
The complementary minimum principal states that, for any stress field (rij,sijk) in V which is statically admis-
sible (i.e. satisfies each of the Eq. (16)), the true complementary energy W* minimises the functional W in Eq.
(22) so that (Smyshlyzev and Fleck, 1996):
W�ðr�ij; s�ijkÞ 6 Wðrij; sijkÞ ð24Þ
This implies that a lower bound collapse load, computed from a statically admissible stress field, corresponds
to maximising the true complementary energy W*.
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3. Applications

Analytical lower and upper bound solutions for geotechnical applications are useful not only for practical
engineering designs, but also for the calibration of computational limit analyses. This section presents some
analytical solutions, based on the preceding gradient-dependent limit theorems, for plane strain conditions.
The material behaviour is assumed to be governed by a generalised Drucker–Prager yield criterion.

3.1. Generalised Drucker–Prager criterion for yielding in gradient-dependent materials

A key characteristic of geomaterials is their pressure-dependent plastic yielding. With the presence of
higher-order stresses in the gradient-dependent constitutive relations, it is necessary to include these quantities
in the yielding behaviour as well. Following Fleck and Hutchinson (1997), the hydrostatic higher-order stress
may be defined as a third-order tensor according to:
sh
ijk ¼

1

4
ðdiksjpp þ djksippÞ ð25Þ
This relation decomposes the higher-order stress sijk into a hydrostatic part sh
ijk and a deviatoric part

s0ijk ¼ sijk � sh
ijk, with the latter having the property s0ijj ¼ s0jij ¼ 0. In the case of an incompressible material

where gikk = gkik = 0, the hydrostatic higher-order stress sh
ijk cannot do work so that sh

ijkgijk ¼ 0. Since sh
ijk is

a third-order tensor, it has no simple first invariant other than a quadratic form. Such a quadratic invariant
will inevitably introduce more parameters and will not fit well with the first invariant of rkk if the two are com-
bined to give the total hydrostatic component of the stresses. In view of these complications, we choose not to
decompose the higher-order stress in this way. Instead, the higher-order stresses are assumed to contribute to
the equivalent deviatoric stresses in a simplified manner, and not augment the hydrostatic stresses at all. This
assumption, which is made purely for the sake of convenience, leads to the following generalised Drucker–Pra-
ger criterion for a gradient-dependent material:
f ¼ aI1 þ J 1=2
2 � k ¼ 0 ð26Þ
In the above, a and k are material constants which are similar to those in the conventional Drucker–Prager
criterion, and
I1 ¼ rkk ð27Þ
J 2 ¼ ðsijsij þ l�2sijksijkÞ=2 ð28Þ
In Eq. (28), l denotes an internal length scale resulting from the introduction of strain gradients and sij =
rij � rkkdij/3 denotes the usual deviatoric part of the Cauchy stress. Note that the higher-order stresses do
not contribute to the hydrostatic invariant I1, and appear in the modified deviatoric invariant J2 through a
quadratic form which is similar to that for sij.

Applying the normality rule (8) to the yield criterion (26) results in the following plastic strain rates and
plastic strain gradient rates:
_ep
ij ¼ k̂½adij þ sij=2J 1=2

2 �; _gp
ijk ¼ k̂l�2sijk=2J 1=2

2 ð29Þ
The plastic volumetric strain rate for our gradient-dependent material is the same as that for the standard
Drucker–Prager criterion:
_ep
v ¼ _ep

ii ¼ 3ak̂ ð30Þ
As with the conventional Drucker–Prager criterion, Eq. (30) predicts dilatancy for a point undergoing plastic
yielding when a > 0. Indeed, the coefficient a still acts as a measure of plastic volume dilatation for the gra-
dient-dependent material. Clearly the plastic volumetric strain rate would be different from (30) if the first
invariant I1 was assumed to depend on the hydrostatic part of the higher-order stress tensor.
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It is also useful to derive the rate of plastic dissipation associated with the generalised Drucker–Prager cri-
terion when plastic yielding occurs in the material. Using Eqs. (9), (26) and (29), the power dissipation per unit
volume may be obtained as:
Û ¼ k̂½aI1 þ
ffiffiffiffiffi
J 2

p
� ¼ k̂k ð31Þ
From (29) we have:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ep

ij _e
p
ij þ l2 _gp

ijk _gp
ijk

q
¼ k̂

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2 þ 2

p
ð32Þ
and the power dissipation per unit volume for the gradient-dependent Drucker–Prager material is:
Û ¼
2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ep

ij _e
p
ij þ l2 _gp

ijk _gp
ijk

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2 þ 2
p ð33Þ
When the gradient terms are dropped, we immediately recover the power dissipation for the conventional
Drucker–Prager criterion according to:
Û0 ¼
2k

ffiffiffiffiffiffiffiffiffi
_ep

ij _e
p
ij

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2 þ 2
p ð34Þ
Note further that, if a = 0, a generalised von Mises (or Prandtl–Reuss) criterion is obtained from Eq. (26):
f ¼ J 1=2
2 � k ¼ 0 ð35Þ
and frictional effects in equations from (31) to (34) are neglected. For this case the power dissipation takes the

simple form of Û ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2_ep

ij _e
p
ij þ 2l2 _gp

ijk _gp
ijk

q
.

3.2. Generalised plane strain problems

A generalised plane strain state for strain gradient theory assumes that both the strains and strain gradients
are zero in one of the Cartesian coordinate directions (say, in the x3 direction). Thus, the following terms will
vanish:
_ei3 ¼ _e3i ¼ 0

_gij3 ¼ _gi3j ¼ _g3ij ¼ 0

�
ð36Þ
where i = 1,2,3, and j = 1,2,3. Consequently, the non-zero strains and strain gradients for the generalised
plane strain state are _e11; _e12 ¼ _e21; _e22; _g111; _g112; _g121 ¼ _g211; _g122 ¼ _g212; _g221; _g222. The corresponding stress state
depends on the particular problem to be addressed. In the following subsections, we develop analytical lower
and upper bound solutions for the collapse of a gradient-dependent layer, subjected to simple shear and uni-
axial compression conditions.

3.3. Simple shear deformation of a gradient-dependent layer

3.3.1. Lower bound for the shear force

Consider a gradient-dependent layer under plane strain simple shear conditions, as shown in Fig. 3. Let the
height of the layer be h, the shear stress applied to the ends be T0, and the coordinate system be fixed so that
the x-axis and y-axis divide the layer into two even halves. The width of the layer is not specified, with the
possibility of it varying between a finite value and infinity, and it is assumed that neither higher-order surface
tractions nor body forces present. To derive a lower bound on the applied shear stress, we first consider the
statically admissible state where there is no yielding, as shown in Fig. 3a. As no plastic dilation occurs, we
assume the vertical displacement is zero and the horizontal displacement is purely a function of y so that
u1 = u(y) 5 0. Letting c = ou/oy denote the engineering shear strain, the non-zero strain and strain gradient
components are e21 = e12 = c/2 and g221 = c,2/2.



Fig. 3. Simple shear of a gradient-dependent von Misses layer: (a) statically admissible state, where rc
mn denote rc

21 and rc
21, and sc
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sc

111; sc
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113; sc
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313; (b) kinematically admissible state.
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If we further assume the material is isotropic, then the elastic relations may be characterised by the second
and third order formulations developed by Mindlin (1965) (see Appendix A). Consequently, the non-zero
Cauchy stresses in the layer are r21 and r12 with r21 = r12, while there are seven non-zero components for
the higher-order stresses: s111,s122,s133,s221,s212,s331,s313. All seven of the latter are linear functions of the
strain gradient g221. The elastic relations for r21 and s221 are thus:
r21 ¼ 2l1e21; s221 ¼ 2l2l2g221

s111 ¼ n1s221; s122 ¼ s212 ¼ n2s221; s133 ¼ s313 ¼ n3s221; s331 ¼ n4s221

(
ð37Þ
where l1 is the conventional shear modulus, l2 may be regarded as a generalised shear modulus for the gra-
dient terms, and both quantities have the unit of stress (Mindlin, 1965). The constants ni, (i = 1, . . . , 4) denote
the ratio of the shear modulus of the corresponding component to that of s221. For the sake of simplicity, we
assume a1 = a2 = a3 = a4 = a5 in Eq. (A.2) for this simple shear problem, which implies the five means of
strain gradient combinations on the right side of Eq. (A.2) contribute equally to the higher order stresses.
In this case, we have
n1 ¼
3

4
; n2 ¼

1

8
; n3 ¼

1

8
; n4 ¼

1

2
ð38Þ
In Eq. (37), the ratio l1/l2 may be viewed as an index which reflects the impact of gradient effects on the over-
all response. The higher this value is, the less significant the gradient effects will be. When l2 = 0 (and thus
l1/l2 =1), the gradient effects are completely neglected and conventional first order mechanics prevails. This
may be verified in the numerical results to be derived.

A gradient-dependent lower bound on the shear force T0 will be derived first. Consider the statically admis-
sible state shown in Fig. 3a. The equilibrium equations (16a) for simple shear give:
r21;2 � s111;11 � s221;22 � s331;33 ¼ 0 ð39Þ

Noting that g221,11 = g221,33 = 0, s111 = 2n1l2l2g221 and s331 = 2n4l2l2g221, we have: s111,11 = s331,33 = 0 and the
above equation is simplified to:
r21;2 � s221;22 ¼ 0 ð40Þ

Integration of this equation over the interval y = [0,h/2] results in:
r21 � s221;2 ¼ T 0 ð41Þ

As there is still a partial differential in Eq. (41), it is difficult to determine r21 and r221 from Eq. (41) directly.
Employing a virtual displacement field with u1 = u(y) 5 0 and a constant shear strain c, and substituting (37)
in (41), lead to
l1c� l2l2c;22 ¼ T 0 ð42Þ
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The general solution to this ordinary differential equation is:
c ¼ T 0

l1

þ C1 exp
y
l

ffiffiffiffiffi
l1

l2

r� �
þ C2 exp � y

l

ffiffiffiffiffi
l1

l2

r� �
ð43Þ
where C1 and C2 are unknown constants which can be found from symmetry and the boundary conditions
described in Eq. (16b) and (16c). In the case of simple shear, as shown in Fig. 3a, the shear strain is anti-sym-
metric so that c|y=0 = 0. Applying this condition to Eq. (43) gives:
C1 þ C2 ¼ �T 0=l1 ð44Þ
Since we have assumed no higher-order surface tractions exist on the surface y = h/2, Eq. (16c) yields:
R1jy¼h=2 ¼ n2n2s221jy¼h=2 ¼ 0 ð45Þ
Noting that n2n2 = 1 on the surface y = h/2, we obtain:
s221jy¼h=2 ¼ 0 ð46Þ
Combining Eqs. (37), (43) and (46) gives:
C2 ¼ C1 exp
h
l

ffiffiffiffiffi
l1

l2

r� �
ð47Þ
which, after insertion into (44), leads to:
C1 ¼ �T 0 l1 1þ exp
h
l

ffiffiffiffiffi
l1

l2

r� �� ��
; C2 ¼ �T 0 l1 1þ exp � h

l

ffiffiffiffiffi
l1

l2

r� �� ��
ð48Þ
Hence the virtual shear strain is:
c ¼ T 0

l1

1�
exp y

l

ffiffiffiffi
l1

l2

q� �
1þ exp h

l

ffiffiffiffi
l1

l2

q� �� exp � y
l

ffiffiffiffi
l1

l2

q� �
1þ exp � h

l

ffiffiffiffi
l1

l2

q� �
0BB@

1CCA ð49Þ
For the statically admissible state, we concerned only with stresses. Using Eqs. (37) and (49), the following
normalised shear stress and higher-order shear stress relations are obtained:
r21

T 0
¼ 1�

exp y
l

ffiffiffiffi
l1

l2

q� �
1þ exp h

l

ffiffiffiffi
l1

l2

q� �� exp � y
l

ffiffiffiffi
l1

l2

q� �
1þ exp � h

l

ffiffiffiffi
l1

l2

q� �
0BB@

1CCA ð50Þ
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lT 0
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ffiffiffiffiffi
l2
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r exp � y
l

ffiffiffiffi
l1

l2

q� �
1þ exp � h

l

ffiffiffiffi
l1

l2

q� �� exp y
l

ffiffiffiffi
l1

l2

q� �
1þ exp h

l

ffiffiffiffi
l1

l2

q� �
0BB@

1CCA ð51Þ
All other non-zero higher-order stresses follow immediately from Eqs. (37) and (51).
The distributions of r21 and s221 along the positive y direction are shown in Fig. 4. The ratio between the

layer height and the internal length scale, h/l, is assumed to be 100, while five sets of the ratio l1/l2 are used to
investigate the influence of the gradient effects. Fig. 4a shows that r21 exhibits a zero value at the center of the
layer (y = 0) and, as expected, gradually increases to the boundary traction value T0 when approaching the top
surface (y = h/2). In contrast, Fig. 4b indicates that s221 generally has its largest value at the center of the layer
(y = 0), and then gradually reduces to zero when approaching the end (y = h/2). The influence of l1/l2 on
the distribution of both r21 and s221 is marked, with lower values for l1/l2 implying larger gradient effects
on the overall mechanical response. Smaller values of l1/l2 cause r21 to reach its peak value at larger values



(a)

(b)

Fig. 4. Normalised distribution profile for r21 and s221 along y = [0,h/2] (h/l = 100): (a) r21/T0 vs. y/h; (b) s221/lT0 vs. y/h.
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of y. The two extreme cases, l1/l2 = 0 and l1/l2 = +1, give r21 = 0 and r21 = T0 throughout the profile,
respectively, while the corresponding s221 values are s221 =1 and s221 = 0. These two cases thus correspond
to total gradient theory (where the Cauchy stresses are zero) and conventional solid mechanics theory (where
the gradient stresses are zero). In conjunction with the variation of l1/l2, the behaviour of r21 at y = h/2 and
s221 at y = 0 ultimately determine the lower bound. Note that the distributions for all other non-zero higher-
order stress components are similar to that for s221, and will not be shown here.

A lower bound on T0 for the simple shear problem, T 0
L, requires the Cauchy and higher-order stresses at

every point in the layer to satisfy the statically admissible conditions (16) and the yielding criterion (26).
For a stress field which satisfies (16), this is equivalent to the following statement:
T 0
L ¼ inf

ðr;s;yÞ
fðrab; sabc; yÞ :! max½f 0ðrab; sabc; yÞ ¼ aI1 þ J 1=2

2 � and f 0 ¼ kg ð52Þ
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where rab and sabc denote, respectively, the non-vanishing stresses and higher-order stresses in the layer under
simple shear, e.g., r21, r12, s111, s122, s133, s221, s212, s331 and s313. As for this special case of simple shear, the
hydrostatic stress and generalised deviatoric stress defined in Eqs. (27) and (28) are respectively:
I1 ¼ 0; J 2 ¼ ð2r2
21 þ l�2fs2

221Þ=2 ð53Þ

where f ¼ 1þ n2

1 þ 2n2
2 þ 2n2

3 þ n2
4. Thus the yield function (26) can be further simplified to the following form:
f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2r2

21 þ l�2fs2
221Þ=2

q
� k ¼ 0 ð54Þ
The maximisation problem (52) can be solved by substituting Eqs. (50) and (51) into Eq. (54), and then finding

a point in the layer, ym, that maximises f 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2r2

21 þ l�2fs2
221Þ=2

q
. Once this point is known, the correspond-

ing values of r21 and s221 at ym can be found and inserted into Eq. (54) to solve the equation for T 0. Because of
the dependence of f 0 on ni, l1/l2 and h/l, a general solution for the maximum of f 0 cannot be found easily. Let
us assume that ni (i = 1, . . . , 4) have the values defined in (38) so that f = 15/8 in (53). For this case, the max-
imum of f 0 occurs either at ym = 0 or at ym = h/2. Following the above procedure, a lower bound on the shear
force T 0 for the former case is:
T 0
L P T 0 ¼

ffiffiffiffiffi
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l2

r exp h
l

ffiffiffiffi
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q� �
þ 1

exp h
l

ffiffiffiffi
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1CCA kffiffiffiffiffiffiffi

f=2
p ð55Þ
When f 0 is a maximum at ym = h/2, we obtain:
T 0
L P T 0 ¼

exp h
l

ffiffiffiffi
l1

l2

q� �
þ 1

exp h
2l

ffiffiffiffi
l1

l2

q� �
� 1

� �2
k ð56Þ
Once l1/l2 and h/l are fixed for a particular material layer under simple shear, the lower bound is determined
by either Eq. (55) or (56). For a fixed value of h/l, there is a threshold quantity rc so that when l1/l2 < rc the
lower bound is given by (55). The precise value of rc may be obtained by equating the two bounds from (55)
and (56). For h/l equal to 2, 4, 8, 10 and 100, the respective values of rc are 2.2931, 1.3764, 1.0077, 0.9655 and
0.9375. Once h/l P 100, the value of rc remains approximately constant. The bound given by Eq. (56) corre-
sponds to the case where conventional terms dominate and the gradient terms are negligible, whereas Eq. (55)
implies the opposite case. For a simply sheared layer with specified h/l, this implies that the threshold rc marks
the zone of influence of the conventional and gradient terms on the lower bound. The lower bounds obtained
above are plotted in another way in Fig. 5 for cases where h/l = 2, 4, 10 and 100. In all instances the lower
bound T 0

L exhibits a maximum value at the threshold l1/l2 = rc, and decreases as the ratio l1/l2 decreases.
Above the threshold rc the lower bound still decreases with increasing l1/l2 until, when l1/l2 is large enough,
it approximates k. It is easy to verify that, if gradient effects are neglected, the lower bound on the shear force
from conventional mechanics theory is:
T 0
LC ¼ k ð57Þ
This result can be obtained immediately by setting l1/l2 = +1 in Eq. (56).
The influence of h/l on T 0

L is of key importance. Fig. 5 shows that when h/l is small, say h/l = 2, the shear
force is applied to a layer comprising two vertically arranged grains or microstructures. In this case the gra-
dient effects on the lower bound T 0

L are appreciable, even when l1/l2 is relatively large. For larger values of h/l,
the gradient effects are not so significant and the predicted value of T 0

L is similar to the conventional solution
once l1/l2 P rc. Regardless of the value of l1/l2, smaller values of h/l lead to a larger prediction for T 0

L. As
shown in Fig. 5, a peak bound of 1.72 times the conventional bound is predicted for h/l = 2. These results can
be used to explain the phenomenon of size effects in material strength. When h/l is large, the effects of micro-
structure (represented by the internal length scale l) may be neglected, as the strength is dominated by



Fig. 5. Influence of l1/l2 and h/l on the gradient-dependent lower bound shear force T 0
L for simple shear.
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macroscopic effects (the sample size h). The gradient effects are thus insignificant and the material strength
(here the predicted lower bound) is relatively low. However, when h/l is small, so that the microstructural
dimensions are comparable with the macroscopic size, the gradient terms play an important role in sustaining
the applied load, and the observed material strength will generally be higher. It is also of interest to discuss the
left branch of the gradient-dependent lower bound solution. As mentioned above, when the ratio l1/l2

becomes extremely small, the predicted T 0
L becomes small as well. In cases other than h/l = 2, T 0

L is even smal-
ler than k. This behaviour implies that, whenever the conventional terms are insignificant, the gradient effects
can only sustain a smaller load, unless the sample size is comparable with the microstructural length. This con-
clusion, however, is not universal and only applicable to the simple shear problem where the higher-order
boundary traction is assumed to be absent. For a real material, the mechanical behaviour will not necessarily
be isotropic and linear elastic. In such a case, the ratio l1/l2 may depend not only on the material, but also on
the sample size and the stress level. Further studies will be required to calibrate this type of behaviour
quantitatively.
3.3.2. A gradient-dependent upper bound for the shear force T 0

In this subsection, an upper bound for the gradient-dependent layer subjected to simple shear will be
sought. A compatible collapse mechanism is assumed, as illustrated in Fig. 3b. A shear band is assumed to
form with an angle of b to the x direction, where b is to be determined. The Cartesian origin O is the geometric
center of the sample as in Fig. 3a. When the shear band is fully developed to a width of w, a slip line is assumed
to occur along its centerline AOB. Along this slip line, the upper endpiece of the sample above the shear band
moves as a rigid body in the opposite direction to the lower portion. The velocity above the shear band CD is
assumed to be v. To accommodate plastic dilation within the band, the direction of the velocity is assumed to
be inclined at an angle / to CD. This / is the friction angle for the gradient-dependent material characterised
by the generalised Drucker–Prager criterion in Eq. (26), and is assumed to have the same relation to the coef-
ficient a as derived by Drucker and Prager (1952):
/ ¼ cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12a2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3a2
p

 !
ð58Þ



494 J. Zhao et al. / International Journal of Solids and Structures 44 (2007) 480–506
It is easily shown that physically meaningful values for a must lie in the range ½0; 1=
ffiffiffiffiffi
12
p
�. According to Fig. 3b,

the outward unit-normal of the shear band,~n, and the unit directional vector of the velocity of the upper end-
piece, ~g, respectively, are:
~n ¼ ðn1; n2Þ ¼ ðsin b; cos bÞ; ~g ¼ ðg1; g2Þ ¼ ðcosð/� bÞ; sinð/� bÞÞ ð59Þ
Within the band, it is further assumed that the velocity varies linearly from one boundary to the other.
Then at the slip line, the absolute velocity is zero. A homogeneous deformation within the band may thus
be assumed. Note that the afore-assumed collapse mechanism is similar to that outlined by Hill (2001) for
localised necking analysis. However, we here also consider plastic flow with gradient effects in the shear band.
Furthermore, for simplicity, we neglect all the anisotropy that may exist or be induced during the deformation.
Consider now the upper half of the sample. In relation to the above assumptions, it is straightforward to verify
that the following relations hold for each point in the parallelogram ABCD:
ovi

oxj
¼ 2v

w
ginj;

o
2vi

oxjoxk
¼ 4v

w2
ginjnk; ði; j; k ¼ 1; 2Þ ð60Þ
This deformation field is no longer as simple as the virtual deformation field of the statically admissible state.
The following strain rates and strain gradient rates (all are plastic rates during collapse and hence we omit
their superscript ‘p’) can then be obtained from Eq. (60):
_e11 ¼ 2vg1n1=w

_e22 ¼ 2vg2n2=w

_e12 ¼ _e21 ¼ vðg1n2 þ g2n1Þ=w

_g111 ¼ 4vg1n2
1=w2

_g112 ¼ 4vg2n2
1=w2

_g121 ¼ _g211 ¼ 4vg1n1n2=w2

_g122 ¼ _g212 ¼ 4vg2n1n2=w2

_g221 ¼ 4vg1n2
2=w2

_g222 ¼ 4vg2n2
2=w2

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð61Þ
In conjunction with Eqs. (33) and (61), the rate of plastic dissipation (per unit volume) in the parallelogram
ABCD is obtained as:
Û ¼
2kv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sin2 /Þ þ 8l2=w2

q
w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 þ 1
p ð62Þ
For this plane strain problem, we consider a unit thickness for the sample. The (horizontal) width of the sam-
ple may also be assumed to be unity, so that the length of the slip line AB is equal to 1/cosb. Thus the volume
of the parallelogram ABCD is w/(2cosb). In view of (62), the total rate of internal energy dissipated along the
slip line AB in the upper half of the sample is given by:
D̂ ¼ Û
w

2 cos b
¼

kv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sin2 /Þ þ 8l2=w2

q
cos b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 þ 1
p ð63Þ
The rate of work of the external forces on the same portion of the sample is:
_W ¼ T 0v cosð/� bÞ ð64Þ

To find an upper bound, we set the external work rate in (64) equal to the dissipation rate in (63) to give:
T 0 ¼
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sin2 /Þ þ 8l2=w2

q
cos b cosð/� bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 þ 1
p ð65Þ
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This equation indicates that, in the presence of gradient effects, the velocity still serves as a virtual quantity (as
with conventional limit analysis).

Eq. (65) gives a general upper bound for T0. The smallest one corresponds to the best upper bound on T0

which we are seeking. This may be achieved by setting the b-derivative of the right-hand side of (65) equal to
zero. This leads to:
bm ¼
/
2

ð66Þ
Consequently, the upper bound for T0 is:
T 0
U 6 T 0 ¼

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sin2 /Þ þ 8l2=w2

q
cos2ð/=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 þ 1
p ð67Þ
In conjunction with Eq. (58), the above result may be further rewritten as:
T 0
U ¼

2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 6a2Þ þ 8l2ð1� 3a2=w2Þ

q
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3a2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12a2
p

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 þ 1
p ð68Þ
When the gradient terms are neglected, so that the term 8l2(1 � 3a2)/w2 vanishes, the conventional upper
bound T 0

UC is recovered:
T 0
UC ¼

2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3a2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12a2
p ð69Þ
Note that this result can also be found by setting w/l = +1 in Eq. (68). Further simplification of Eq. (68) may
be made by letting a = 0. This simplified case corresponds to an upper bound for the generalised von Mises
yield criterion:
T 0
U ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8l2=w2

q
ð70Þ
As can be seen from (68), the upper bound for the shear force T0 depends not only on the model constants a
and k, but also on the ratio of the shear band width over the internal length scale w/l. This dependence is de-
picted in Fig. 6. Six sets of w/l are adopted: 2, 3, 5, 7, 10 and infinity. For all cases of w/l, larger values of a
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Fig. 6. The normalised upper bound T 0
U with relation to a and w/l.
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generally correspond to larger values of T 0
U=k. The maximum value of T 0

U=k is achieved when a reaches 1=
ffiffiffiffiffi
12
p

,
while the smallest value is obtained at a = 0. For a fixed value of a, smaller values of w/l correspond to larger
values of T 0

U=k. The conventional upper bound T 0
UC=k lies below all other curves with gradient effects. As ex-

pected, when w/l is sufficiently large (w/lP10), the curve for T 0
U=k becomes very close to that of the conven-

tional upper bound T 0
UC=kðw=l ¼ 1Þ. Thus the gradient-dependent upper bound T 0

U=k is always larger than
the conventional one. This can also be deduced directly by comparing Eqs. (68) and (69). With an extra non-
negative term in the numerator, the gradient-dependent upper bound will always be larger than the conven-
tional one. In addition, it is found that, for all values of w/l and a; T 0

U P k.
It is noteworthy that the introduction of strain gradients, and consequently the internal length scale l,

restricts the conventional assumption that the shear band width w can be zero. Indeed Eq. (68) predicts that,
if w = 0, the term 8l2(1 � 3a2)/w2 will become infinitely large so that the upper bound of T0 will also become
unrealistically infinite. Therefore, the internal length scale l acts here as a constitutive limiter to confine the
plastic deformation within a finite but non-zero width.

Regarding the band width, another interesting observation can be made. As previously noted, T 0
U exhibits

no obvious difference with T 0
UC when w/l P 10, which implies that the gradient effects are no longer significant.

Experimental observations of geomaterial behaviour frequently confirm the following four stages during the
development of failure: (1) a homogeneous deformation stage; (2) a diffused deformation stage; (3) an inten-
sely deformed shear banding stage; and (4) a macroscopic fracturing stage. From Stage (1) to Stage (4), the
value of w/l can be interpreted to progressively change from very large values to very small ones. During
the first two stages of deformation, w/l is sufficiently large so that gradient effects remain negligible. From
the third stage onwards, when intense shear banding occurs, w/l becomes so small (w/l 6 10 for this case) that
the microstructures become comparable in size to the shear band dimension. The gradient effects are no longer
negligible and influence the mechanical response markedly. Interestingly, in conventional limit theorems, the
latter stages are not accounted for in the material failure model. This suggests that the corresponding compat-
ible collapse mechanism may not necessarily be physically reasonable. The current gradient-dependent upper-
bound analysis exhibits a possible interpretation for the microscopic evolution of failure, and thus has an
advantage over a conventional one.

From the above it is clear that the shear band width plays a central role and, hence, should be selected with
care. From both experimental observations we know that generally w� h. For a simple shear problem, Zhao
et al. (2005) has developed an analytical solution for w for a gradient-dependent infinite layer under simple
shear. However, the shear band treated therein was assumed to be a horizontal band governed by a gradi-
ent-enhanced damage model with a softening branch, and no dilation was considered. Nevertheless, the basic
analysis approach used is still applicable here in deriving the expression of shear band width w in relation to
the internal length scale l, the layer height h, and other model parameters. This will be investigated in a future
paper together with other complex problems frequently observed in geotechnical applications.

3.3.3. Comparison with experimental results

The lower and upper bounds obtained above for the simple shear test will in the following be used to
predict the bounds for some real soils. It has long been recognised that natural undisturbed soils have com-
plex microstructures that make them exhibit higher strength than reconstituted soils. We assume that part of
the behaviour of these microstructures in natural soils can be addressed by strain gradient theory, so that the
preceding limit analysis can be used to investigate the load bounds for these soils. Four sets of experimental
data on intact natural clays reported in Burland et al. (1996) are chosen here for this purpose. The strength
characteristics of the four clays in terms of the frictional angle / and the cohesion c* (normalised with
respect to a pressure rve, where rve is the equivalent pressure on the compression curve of the reconstituted
soil corresponding to the void ratio of the natural soil at yield, see, Burland et al., 1996) are presented in
Table 1.

We now consider a soil specimen of height h for any of the four clays and subjected to simple shear defor-
mation. The lower and upper bounds for the ultimate shear force are sought. Before going through the cal-
culations, however, we need to interpret the Mohr–Coulomb strength parameters in terms of the
corresponding parameters used in the Drucker–Prager criterion. The friction coefficient a is given directly
by Eq. (58) in terms of /, whereas, under plane strain conditions, the cohesion coefficient k is given by



Table 1
Predicted lower and upper bounds of the shear force for four natural clays (data from Burland et al., 1996)

Experimental data Other parameters Lower bound Upper bound

Site of clay / c* rve (MPa) a k* h
l

l1

l2

w
l T 0�

LC T 0�

L T 0�

UC T 0�
U

Pietrafitta 24.5� 0.18 0.49 0.1344 0.1593 20.0 1.0 2.5 0.1593 0.1645 0.1715 0.2481
Todi 20.4� 0.17 2.80 0.1139 0.1562 20.0 1.0 2.5 0.1562 0.1613 0.1645 0.2407
Vallaericca 21.4� 0.26 0.90 0.1190 0.2369 20.0 1.0 2.5 0.2369 0.2447 0.2507 0.3659
Corinth maril 31.1� 0.45 0.47 0.1650 0.3639 20.0 1.0 2.5 0.3693 0.3814 0.4152 0.5887
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k� ¼ 3c� cos /=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 3 sin2 /

q
. For all four clays, we assume h/l = 20 and a gradient-dependent stiffness

identical to the conventional stiffness so that l1/l2 = 1. To define the kinematic collapse pattern, we adopt
a shear band width which is 2.5 times the internal length scale so that w/l = 2.5. Note that these assumptions
are made in the absence of better information, and that accurate determination of the values for l, l1/l2 and
w/l requires further experimental work. Using these parameters, the corresponding conventional and gradient-
dependent lower and upper bounds for the shear force applied to the four clay specimens are presented in
Table 1. In calculating the gradient-dependent lower bounds, the bound solution in Eq. (55) has been used.
Note that in Table 1, the values with a superscript ‘*’ have been normalised by the equivalent pressure rve.
For all the four clays we have T 0�

LC < T 0�
L < T 0�

UC < T 0�
U , so that the gradient-dependent lower and upper bounds

for T are larger than the conventional lower and upper bounds, while the gradient-dependent lower bound is
below the conventional upper bound. As natural soils are frequently ‘stiffer’, than reconstituted ones, they
often sustain higher stress and deformation levels, with microstructures contributing significantly in this pro-
cess. This feature is predicted by the higher bounds from the gradient theory which considers the microstruc-
tural effects. In contrast, the use of conventional limit analysis leads to underestimated collapse loads for these
stiff clays.

3.4. Uniaxial compression on a gradient-dependent layer

In this section, a gradient-dependent layer under plane strain uniaxial compression is considered. A layer of
height h is subjected to a compressive pressure P0 on both ends as depicted in Fig. 7. As in Section 3.3, we
assume neither higher-order surface tractions nor body forces are present. The statically admissible state
shown in Fig. 7a is first considered, together with the two kinematically admissible collapse mechanisms
depicted in Figs. 7b and c. The detailed derivations for the lower bound and upper bounds for the compressive
pressure P0 follow closely those described for the simple shear case discussed in previous sections.
Fig. 7. Plain strain uniaxial compression of a gradient-dependent layer under: (a) statically admissible state, where rc
mn denote rc

11; rc
22 and

rc
33, and sc

lmn denote sc
112; sc

121; sc
211; sc

222; sc
233; sc

323 and sc
332; (b) kinematically admissible state with single band; (c) kinematically

admissible state with double bands.
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3.4.1. A gradient-dependent lower bound for the compressive pressure P0

For the statically admissible state depicted in Fig. 7a, it is assumed there is only one non-zero displacement
in the vertical direction and that it is a function of y only: u2 = u2(y) 5 0. Thus the non-zero strain and strain
gradient components reduce to two, e22 and g222, which are given by: e22 = u2,2 = e and g222 = u2,22 = e,2. For
an isotropic material, the three non-zero Cauchy stresses in the sample are r11, r22 and r33, while the non-zero
higher-order stresses are s112,s121,s211,s222,s233,s323 and s332. Note that r11, r22 and r33 are all functions of e
only, and s112,s121,s211,s222,s233,s323 and s332 are all functions of g222 only. It is further found that in this case
we have s121 = s211 = s233 = s323. Following the isotropic linear elastic relations defined in Appendix A, the
following elastic relations are assumed:
r11 ¼ r33 ¼ k1e

r22 ¼ ðk1 þ 2l1Þe
s222 ¼ l2k2e;2
s112 ¼ n1s222

s121 ¼ s211 ¼ s233 ¼ s323 ¼ n2s222

s332 ¼ n3s222

8>>>>>>>><>>>>>>>>:
ð71Þ
where k1 and l1 are the conventional Lame constants, k2 is a generalised modulus for the gradient term, and ni

(i = 1, . . . , 3) are non-zero coefficients representing the relative modulus between other higher-order stress
components and s222. For this statically admissible state of uniaxial compression, the equilibrium equation
of Eq. (16a) in the y direction has the following form:
r22;2 � s222;22 ¼ 0 ð72Þ
Following the same procedure as that of Section 3.3.1, r22 and s222 may be obtained as:
r22

P 0
¼ 1� 1

1þ e
h
l

ffiffiffiffiffiffiffiffiffi
k1þ2l1

k2

q e
y
l

ffiffiffiffiffiffiffiffiffi
k1þ2l1

k2

q
� 1

1þ e
�h

l

ffiffiffiffiffiffiffiffiffi
k1þ2l1

k2

q e
�y

l

ffiffiffiffiffiffiffiffiffi
k1þ2l1

k2

q0B@
1CA ð73Þ

s222

lP 0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

k1 þ 2l1

s
1

1þ e
�h

l

ffiffiffiffiffiffiffiffiffi
k1þ2l1

k2

q e
�y

l

ffiffiffiffiffiffiffiffiffi
k1þ2l1

k2

q
� 1

1þ e
h
l

ffiffiffiffiffiffiffiffiffi
k1þ2l1

k2

q e
y
l

ffiffiffiffiffiffiffiffiffi
k1þ2l1

k2

q0B@
1CA ð74Þ
In this uniaxial compression case, the yield function of Eq. (26) reduces to:
f ¼ af1r22 þ l�1f2s222 � k ¼ 0 ð75Þ
where f1 = (3k1 + 2l1)/(k1 + 2l1) and f2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ n2

1 þ 4n2
2 þ n2

3Þ=2
q

. Now consider the function
f0 = af1r22 + l�1f2 s222 and define the following quantity
A ¼ af1r � f2 ð76Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ 2l1Þ=k2

p
. If A < 0 then f0 attains its maximum at y = 0, otherwise the maximum of f0 is lo-

cated at:
ym

h
¼ 1

2
1þ l

hr
ln

af1r � f2

af1r þ f2

� �� �
ð77Þ
Therefore, when A < 0, a lower bound for P0 is obtained as:
P 0
L P P 0 ¼ e

h
lr þ 1

e
h
lr � 1

 !
r
f2

k ð78Þ
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In this case, the gradient terms dominate the lower bound. On the other hand, when f0 is maximised at ym in
Eq. (77), the lower bound for P0 is:
P 0
L P P 0 ¼ k

af1 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaf1Þ2 � f2

r

� �q
ehr=2l

1þehr=l

ð79Þ
In this latter case, both the conventional and the gradient terms contribute to the lower bound. Following the
same procedure, it is easily verified that the conventional lower bound P 0

LC without gradient effects is:
P 0
LC P P 0 ¼ k

af1

ð80Þ
Eq. (80) can also be directly recovered from the gradient-dependent lower bound solution in Eq. (79) by letting
f2 = 0 and h/l = +1. Since f2 = 0, ym in (77) is equal to h/2, which means that the conventional terms dom-
inate while the gradient terms vanish.

The lower bound (79) is compared with the conventional lower bound in Fig. 8. We assume here that
a = 0.25 and f1 = 4 so the conventional lower bound is P 0

LC ¼ k. We further assume f2 = 2, so that r > 2 will
render A > 0 in (76). Six values of h/l are adopted: 2, 3, 4, 5, 6 and1. As may be seen, all the gradient-depen-
dent bounds predicted by Eq. (79) are larger than the conventional ones. The bound with smaller h/l generally
exhibits a higher prediction. When r becomes infinitely large, all gradient-dependent bounds coincide with the
conventional one. It is also found that when h/l P 10, the obtained P 0

L will fall onto the horizontal line of the
conventional bound.

3.4.2. Gradient-dependent upper bounds for P0

Consider the two compatible collapse mechanisms illustrated in Figs. 7b and c. For the single-band case,
the same procedure as for simple shear case is followed. Detailed derivations will be omitted here for briefness,
and only the obtained upper bound P 0

U for this uniaxial compressed layer with single band is provided. It is
found that when:
bm ¼
p
4
� /

2
ð81Þ
2 2.5 3 3.5 4 4.5 5 5.5 6
1

1.02

1.04

1.06

1.08

1.1

1.12

r

P
0 L
/k

h/l=2.0h/l=3.0

h/l=4.0

h/l=5.0
h/l=6.0 h/l=+∞ (P0

LC
/k)

Fig. 8. Variation of P 0
L=k in Eq. (79) with relation to r and h/l (a = 0.25, f1 = 4, f2 = 2).
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the upper bound for P0 is
Fig. 9
pentag
P 0
U 6 T 0 ¼

2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sin2 /Þ þ 8l2=w2

q
ð1þ sin /Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 þ 1
p ð82Þ
Using Eq. (58), the result in (82) may be further rewritten as:
P 0
U ¼

2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 6a2Þ þ 8l2ð1� 3a2Þ=w2

q
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3a2
p

þ 3aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 þ 1
p ð83Þ
Again the corresponding conventional upper bound P 0
UC may be obtained by setting w/l equal to infinity to

give
P 0
UC ¼

2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3a2
p

þ 3a
ð84Þ
Variation of this upper bound with respect to a and w/l, together with the conventional upper bound, will be
compared with the results for the double-banded case in the following.

Consider now the double-band case as shown in Fig. 7c. Due to symmetry, we take the upper half of the
sample as illustrated in Fig. 9a. It is assumed the rigid block A moves vertically at a velocity of �v2 (v2 > 0),
while the rigid block D moves at a velocity of v1 (v1 > 0) along the x direction. It is further assumed that in the
pentagon oabcd, the boundary cd has a velocity of v2 while the boundary ab moves at v1. Within this pentagon,
the overall velocity field changes gradually from cd to ab over a total width of w. To facilitate an easy under-
standing of the velocity variation, detailed velocity distributions along all the boundaries of oabcd and along
ad are depicted in Figs. 9b and c, respectively. In view of Fig. 9a, the unit normal and tangential vectors of the
pentagon oabcd are respectively:
~n ¼ ðn1; n2Þ ¼ ðsin b;� cos bÞ; ~t ¼ ðt1; t2Þ ¼ ðcos b; sin bÞ ð85Þ

To build a relation between v1 and v2, two points p1 and p2 located on neighbouring boundaries of the band
are considered. The following dilatancy condition is invoked for the velocity differences between the two
points:
½v*1 � v
*

2�n ¼ tan /½v*1 � v
*

2�t ð86Þ
. Zoomed upper half configuration of Fig. 7c: (a) zoomed view; (b) horizontal velocity distribution of each boundary of the
on oabcd; (c) vertical velocity distribution of each boundary of oabcd.
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where / is the frictional angle as defined in Eq. (58). ½v*1 � v
*

2�n and ½v*1 � v
*

2�t are, respectively, the velocity
difference of the two points in the normal direction and the tangential directions. Combining (85) and (86),
we have:
1 Th
W� w
v1 sin b� v2 cos b ¼ tan /ðv1 cos bþ v2 sin bÞ ð87Þ

From Eq. (87), the following relation between v1 and v2 is obtained:
v1 ¼ #v2 ð88Þ

where # = 1/tan(b � /). In recognition of the velocity distributions within the pentagon oabcd, the following
relations for the strain rates and strain gradient rates are obtained:
_e11 ¼ v1 sin b=w

_e22 ¼ �v2 cos b=w

_e12 ¼ _e21 ¼ ðv2 sin b� v1 cos bÞ=ð2wÞ
_g111 ¼ v1 sin2 b=w2

_g112 ¼ �v2 sin2 b=w2

_g121 ¼ _g211 ¼ v1 sin b cos b=w2

_g122 ¼ _g212 ¼ �v2 sin b cos b=w2

_g221 ¼ v1 cos2 b=w2

_g222 ¼ �v2 cos2 b=w2

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð89Þ
Using Eq. (88) to substitute for v1 with v2, and following the same procedure outlined in Section 3.3.2, the rate
of dissipation per unit volume in the bands is obtained as:
Û ¼
kv2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sin2 /Þ þ 2l2=w2

q
j sinðb� /Þjw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 þ 1
p ð90Þ
To obtain the overall rate of internal energy dissipation, we further assume the shear band width is very small
compared to the sample width. This will avoid the explicit introduction of the sample width when calculating
the shear band volume. A layer of unit thickness and unit width is further assumed. The total volume of bands
in the upper half of the sample can be approximated by w/(cosb)1, and the total rate of internal energy dis-
sipation may be obtained as:
D̂ ¼ Û
w

cos b
¼

kv2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sin2 /Þ þ 2l2=w2

q
cos bj sinðb� /Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 þ 1
p ð91Þ
In this case, the rate of work done by the external forces on the upper half of the sample is:
_W ¼ P 0v2 ð92Þ

Equating Eqs. (91) and (92) leads to the following upper bound for P0:
P 0 ¼
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sin2 /Þ þ 2l2=w2

q
cos bj sinðb� /Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 þ 1
p ð93Þ
The extreme value of (93) occurs at
bm ¼
p
4
þ /

2
ð94Þ
e exact volume of the band for the upper half should be w(2W sinb � w)/(2sin2b), where W denotes the sample width. When
, this volume may be approximated by wW/cosb. Assuming W = 1 we have a volume of w/cosb.
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which coincides with the value predicted by Hill (1952, 2001) for a double-band formation, even in the pres-
ence of gradient terms. At bm, the upper bound of P0 for this double-band collapse mechanism is:
Fig. 10
with re
P 0
U0 ¼

2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sin2 /Þ þ 2l2=w2

q
ð1þ sin /Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 þ 1
p ¼

2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 6a2Þ þ 2l2ð1� 3a2Þ=w2

q
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3a2
p

þ 3aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6a2 þ 1
p ð95Þ
If w/l =1 (so that gradient terms may be neglected), a conventional upper bound with the double-band col-
lapse mechanism is readily obtained from (95):
P 0
U0C ¼

2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3a2
p

þ 3a
ð96Þ
This is identical with Eq. (84) for a single band mechanism. Hence, for the two collapse patterns, the conven-
tional upper bounds are the same: P 0

UC ¼ P 0
U0C.

Comparing the double-band upper bound obtained above with the single-band one presented in Eq. (83),
one immediately finds that the bounds for the two mechanisms differ only in the coefficients of the gradient
terms. If gradient effects are appreciable, the double-band upper bound is smaller than the single-band one.
To illustrate their relationship more clearly, the distributions of the two bounds are plotted against a and
w/l in Fig. 10. In this figure, the double-band results are denoted by solid lines, with dashed lines showing
the single-band predictions. For both collapse mechanisms, the gradient dependent compressive layer attains
a maximum upper bound at a = 0 for all cases of w/l, while a minimum value is obtained at a ¼ 1=

ffiffiffiffiffi
12
p

. Smal-
ler values of w/l generally result in larger values of P 0

U and P 0
U0 . The conventional prediction (w/l = +1) is

below all the other predicted curves with finite w/l. It can thus be concluded that the gradient-dependent upper
bound for either the single-band or double-band mechanism is larger than its conventional counterpart. At the
same values of a and w/l, the double-band mechanism leads to a smaller upper bound than the single-band
one, which confirms the assertion in the beginning of this paragraph. We now have a second look at the
two bounds in Eqs. (83) and (95). The coefficients of the gradient terms have led to the difference between
the two bounds. We now incorporate the coefficient into the shear band width in both expressions, and assume
the band width for the double-band case is half that of the single-band mechanism (the width of the sample is
the same for the two cases). Given that a and l are material properties and are constant under any conditions,
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we readily find that the two expressions predict the same upper bound for the uniaxial compression test. In
other words, at the same collapse load, a wider band width for the single-band failure is expected, while
for a double-band mechanism, thinner failure zones with roughly half width of that of the single-band
mechanism will be found. It is easy to interpret this from an energy point of view. For a sample at a certain
collapse load level, the mechanical energy dissipated in driving the development of microstructural
deformation and macroscopic shear bands is fixed, and so is the effective volume of the shear bands. Hence,
if the band length for the double-band case is double that of the single-band one, the band width for the
former will certainly be smaller than the latter. The inclusion of gradient terms again takes into account
the effect of microstructures on the upper bounds for different collapse mechanisms, which is an improvement
on the conventional theory.

3.4.3. Comparison with experimental results
The above lower and upper bounds for uniaxial compression tests are now compared with experimental

data. As uniaxial compression tests (UC) are rarely conducted for soils, due to the loose properties of these
materials, we have chosen a set of data for rocks for the comparison. The results are from the experiments
conducted by Papamichos et al. (2000) for Red Wildmoor (RW) sandstone. Over 10 specimens were tested
under uniaxial compression conditions and many others underwent conventional triaxial compression and
plane biaxial compression. The strength parameters of RW sandstone, however, were derived only from tri-
axial and biaxial tests and given in terms of the frictional angle / and cohesion c. The obtained strength
parameters were / = 42.6� and c = 2.73 MPa for samples under humid conditions (Table IX therein). Even
though the corresponding strength indices may vary for uniaxial compression conditions, we still use the
above parameters for a preliminary investigation of the load capacity on RW sandstone sample under uniaxial
compression conditions.

Using Eq. (58) and the relation k ¼ 3c cos /=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 3 sin2 /

q
, the equivalent strength parameters for the plane

strain Drucker–Prager criterion are a = 0.2101 and k = 1.8717 MPa. The experiments also provided useful
information on the average grain size D50 and shear band width w as follows: D50 = 0.107 mm, w = 4.5D50.
We further assume that the internal length scale l is 3 times D50: l = 3D50. For the uniaxial compression case,
we assume only the axial higher stress dominates so that n1 = n2 = n3 = 0 in Eq. (71). This leads to f2 = 0.71.
We further assume the gradient modulus is comparable to the conventional one, so that k1 = k2. Using average
elastic parameters for specimens in the uniaxial compression tests (E = 1938 MPa, v = 0.38, excluding those
with v > 0.5 and those not failed) and assuming plane strain conditions, we adopted a value of f1 = 4.17.
For the lower bound analysis, it is readily verified that the combination of the above parameters leads to
A > 0, so that Eqs. (79) and (80) can be used, respectively, to compute the gradient-dependent and conven-
tional lower bounds. As the specimens used in the experiments were either 50.8 mm or 101.6 mm in height,
the ratio h/l for this case is so large that the gradient effects in the lower bound expression become negligible.
Hence the gradient-dependent lower bound computed from Eq. (79) is approximately the same as the conven-
tional one obtained from Eq. (80): P 0

L¼
: P 0

LC ¼ 2:138 MPa. The gradient-dependent and conventional upper
bounds can be obtained by using Eqs. (83), (84) and (95) as: P 0

UC ¼ 2:3968 MPa; P 0
U ¼ 4:445 MPa;

P 0
U0 ¼ 3:041 MPa. Immediately, we see that P 0

LC ¼ P 0
L < P 0

UC < P 0
U0 ; < P 0

U, which appears reasonable for the
load capacity of the uniaxial compression problem.

When these predicted bounds for P0 are further compared with experimental results of uniaxial compres-
sion tests in Papamichos et al. (2000), it is found that the smallest peak axial compressive stress obtained in the
experiments (4.5 MPa for the specimen CAV9508) is larger than P 0

U. Several possible reasons may give rise to
the above discrepancy. Firstly, the experimental strength parameters for RW sandstone were derived from
conventional triaxial and biaxial compression tests, whereas the problem considered is a plane strain uniaxial
compression case. As remarked by Bishop (1966), the friction angle in the plane strain case is generally larger
than in the triaxial case. The cohesion may also vary for the two cases. In addition, the assumed parameters
for the bound calculation (l, f2 and k2) may deviate markedly from their real values. Thus, using appropriate
strength indices and model parameters for the bound computation may reduce the above discrepancy. Sec-
ondly, the actual stress field in the uniaxial compression tests is truly three-dimensional, and the plastic defor-
mation may involve complex hardening and softening behaviour. Moreover, it is further complicated by the
possible existence of random heterogeneous imperfections in the testing specimens. Our plane strain assump-



504 J. Zhao et al. / International Journal of Solids and Structures 44 (2007) 480–506
tion for the problem, and the simplification inherent in an elastic perfectly-plastic constitutive relation for a
homogenous material, will also contribute error in the limit load prediction. Thirdly, uniaxially compressed
specimens may undergo severe fragmentation, as remarked by Vardoulakis et al. (1998). This can lead to com-
plicated mechanical behaviour accompanying the emergence of micro- and macro-cracks in the specimen, and
frequently lead to axial splitting failures. The limit formulations derived here are inappropriate for modelling
this mode of failure.
4. Conclusions

The limit theorems proposed by Drucker et al. (1952) and Drucker and Prager (1952) are reformulated
within the framework of strain gradient plasticity. Equilibrium equations and boundary conditions with con-
sideration of gradient terms are developed, and the lower and upper theorems are rephrased for gradient-
dependent materials. A generalised Drucker–Prager yield criterion is proposed to consider geomaterials with
hydrostatic stress dependence and gradient effects. Analytical solutions for two generalised plane strain prob-
lems are found and compared with those obtained from conventional theories. The influence of gradient effects
on these solutions is addressed.

Through two plane strain examples, it is shown that the inclusion of gradient terms makes the lower-
bound solutions dependent on the conventional to higher-order elastic modulus ratio, the sample size to
internal length scale ratio, as well as the strength parameters. For the upper bounds, the influence of the
gradient terms is primarily controlled by the ratio of the shear band-width to the internal length scale. It
is shown that this length scale is a constitutive limiter and prevents the localised shear band width from
being zero. The internal length scale also allows us to address the influence of size effects on the strength
of geomaterials. It is illustrated that collapse loads are generally higher for smaller samples and/or narrower
shear band formations, and vice versa. Qualitative comparisons of the bound results with experimental data
have also been given.

Using the principles and procedures outlined in this paper, other applications like simple bending and
axi-symmetric loading problems with gradient effects are also treatable. This will be a topic of future
work.
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Appendix A. Isotropic linear elastic strain gradient theory of Mindlin (1965)

In this paper, the following generalised Hooke’s theory of Mindlin’s (1965) is used to describe the strains
and strain gradients in linear elastic isotropic material, with the second-order gradient of strains being
neglected (see Eq. (20) therein):
rij ¼ k1ekkdij þ 2l1eij ðA:1Þ

sijk ¼ a1ðgippdjk þ gjppdikÞ þ
1

2
a2ðgppidjk þ 2gkppdij þ gppjdikÞ þ 2a3gppkdij þ 2a4gijk þ a5ðgkji þ gkijÞ ðA:2Þ
Appendix B. Proof of the gradient-dependent lower-bound theorem in Section 2.4.1

The proof of the gradient-dependent lower-bound theorem is similar to that for the conventional lower-
bound theorem given by Chen and Han (1988). To prove this theorem, we show that assuming it to be false
results in a contradiction. If the body under the loads Tk, Rk and Fk collapses, the failure mode is associated
with the actual stresses, higher order stresses, strain rates, strain gradient rates, and displacement rates
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rc
ij; sc

ijk; _ec
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ijk and vc
i . This collapse pattern corresponds to the collapse loads Tk on ST, Rk on SR and Fk in

V, with vc
i ¼ 0 and nlolvi = 0 on Su. There may be two equilibrium systems existing: Tk, Rk, Fk, rc

ij; s
c
ijk and Tk,
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ij; sE

ijk. From the virtual work equation in (15), we have:
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F c
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Hence,
Z
v
ððrc

ij � rE
ijÞ_ec

ij þ ðsc
ijk � sE

ijkÞ _gc
ijkÞ dV ¼ 0 ðB:3Þ
Since we assume that all deformation at collapse is plastic, (B.3) becomes
Z
v
ððrc

ij � rE
ijÞ_e

pc
ij þ ðsc

ijk � sE
ijkÞ _g

pc
ijkÞ dV ¼ 0 ðB:4Þ
In the compound space of stresses and higher order stresses, the properties of convexity and normality to the
yield surface require that:
ðrc
ij � rE

ijÞ_e
pc
ij þ ðsc

ijk � sE
ijkÞ _g

pc
ijk > 0 ðB:5Þ
for any rE
ij and sE

ijk below yield. Therefore, the sum of positive terms cannot vanish and Eq. (B.4) cannot be
true. The gradient-dependent lower-bound theorem is thus proved. If f ðrE

ij; s
E
ijkÞ ¼ 0 is permitted, then the

material body may be at the point of collapse.

Appendix C. Proof of the gradient-dependent upper-bound theorem in Section 2.4.2

We prove the gradient-dependent upper-bound theorem using an apagogical approach, which is similar to
the proof for the conventional upper-bound theorem given by Chen and Han (1988). We show that assuming
the theorem to be false leads to a contradiction.

For a kinematically compatible mechanism with plastic deformation _ek
ij and _gk

ijm; vk
i and Dvk

i which satisfies
the conditions vk

i � 0 and Dvk
i � 0 on the displacement boundary Su, the loads determined by choosing the

equality case of inequality (19) are assumed to be Tk, Rk and Fk. Now assume that these loads are less than
the actual limit loads, so that the material body will not collapse at this level of loading. An equilibrium dis-
tribution of stresses rE

ij and higher order stresses sE
ijk therefore exists which everywhere in the body are below

yield f ðrE
ij; s

E
ijkÞ < 0. From the principle of virtual work of Eq. (15), we have:
Z

S
ðT ivk

i þ RiDvk
i Þ dS þ

Z
V

F ivk
i dV ¼

Z
ðrE

ij _e
k
ij þ sE

ijk _gk
ijkÞ dV ðC:1Þ
Since we obtained Tk, Rk and Fk by equating the two sides of inequality (19), in view of Eq. (20) and (C.1), we
have:
Z

v
½ðrk

ij � rE
ijÞ_ek

ij þ ðsk
ijk � sE

ijkÞ _gk
ijk� dV ¼ 0 ðC:2Þ
As rE
ij and sE

ijk are below yield while rk
ij and sk

ijk are on the yield surface, the properties of convexity and nor-
mality require
ðrk
ij � rE

ijÞ_ek
ij > 0; and ðsk

ijk � sE
ijkÞ _gk

ijk > 0 ðC:3Þ
(C.2) and (C.3) are in obvious contradiction to each other. The gradient-dependent upper-bound theorem is
thus proved.
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