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CALCULATION OF RESPONSE SPECTRA FROM 
STRONG-5~OTION EARTHQUAKE RECORDS 

BY NAVIN C. NIGA~ AND PAUL C. JENNINGS 

ABSTRACT 

A numerical method for computing response spectra from strong-motion earthquake 
records is developed, based on the exact solution to the governing differential 
equation. The method gives a three to four-fold saving in computing time compared 
to a third order Runge-Kutta method of comparable accuracy. An analysis also is 
made of the errors introduced at various stages in the calculation of spectra so that 
allowable errors can be prescribed for the numerical integration. Using the pro- 
posed method of computing or other methods of comparable accuracy, example 
calculations show that the errors introduced by the numerical procedures are much 
less than the errors inherent in the digitization of the acceleration record. 

INTRODUCTION 

Since their introduction (Benioff, 1934; Blot, 1941; Housner, 1941), response spectra 
of strong-motion earthquakes have proved useful and informative in problems of 
design and analysis of structures subjected to strong earthquake motions. The spectra, 
calculated from the recorded ground acceleration, are plots of the maximum response 
to the earthquake of a simple oscillator over a range of values of its natural period and 
damping. These curves provide a description of the frequency characteristics of the 
ground motion and give the maximum response of simple structures to the earthquake. 
By superposition of different modes of response, spectrum techniques can be applied 
~o the design and analysis of complex structures such as buildings and dams. Used in 
this manner the spectrum technique represents an approach intermediate between a 
design based on static loads and a complete integration of the equations of motion of 
the complex structure. 

Strong-motion earthquake records have been obtained infrequently in the past and 
the reduction to digital form, or equivalent analog form, and subsequent calculation of 
spectra have been performed on more or less an individual basis. However, in recent 
years the number of strong-motion instruments in the seismic regions of the world, 
particularly California, Mexico and Japan, has increased to the point where a 
major earthquake in these areas will generate a large number of records. The potential 
volume of the data and the development of the tape-recording accelerograph indicate 
clearly that rapid and automated data processing and spectrum c~lculation procedures 
are needed. In an effort to fulfill part of this need, this paper presents a rapid, accurate 
method for computation of response spectra from strong-motion earthquake records. 

Response spectra were first obtained by Blot (1941), using a direct mechanical 
analog and later by Housner and MeCann (1949) using electric analog techniques. The 
availability of digital computers and a progressive increase in the speed of digital 
computation in recent years has led to an increasing use of digital computers in the 
calculation of spectra. The extensive application of the response spectrum to problems 
in earthquake engineering has sustained interest in methods of calculating spectra and 
has raised questions regarding accuracy, reproducibility and economy in such calcula- 
tions (Hudson, 1962; Brady, 1966; Berg, 1963; Schiff and Bogdanoff, 1967). 

The digital computation of spectra requires the repeated numerical solution of the 
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response of a simple oscillator to a component of recorded ground acceleration. The 
motion of the oscillator is described by a second order, linear, inhomogeneous differen- 
tial equation, and if a digital description of the earthquake record is available, the 
response can be obtained by numerical integration. Several numerical integration tech- 
niques have been used for calculation of spectra, for example, the third order Runge- 
Kutta scheme of integration has been preferred by some investigators because of its 
accuracy, long-range stability, self-starting feature and because it can be adapted 
easily for use when the excitation is not defined at regular intervals (Jennings, 1963; 
Hildebrand, 1956). The truncation error in this method is proportional to (A0) 4, where 
A0 is the normalized interval of integration. Thus by a suitable choice of A0 the calcu- 
lations can be performed to an acceptable degree of accuracy. 

An alternative approach to calculation of spectra is based on obtaining the exact 
solution to the governing differential equation for the successive linear segments of the 
excitation, then using this solution to compute the response at discrete time intervals 
in a purely arithmetical way (Hudson, 1962; Iwan, 1960). This method does not intro- 
duce numerical approximations in the integration other than those inherent in round- 
off, so in this sense it is an exact method. 

In this p~per this method is uss:l to develop a computation technique which leads 
to a three-to four-fold s~ving in computing time compared to a third order Runge- 
Kutta methoJ of comparable accurgcy. If the egrthqu~ke record is digitized at equal 
time intervals, the proposed scheme gives spectral values which are exact in the sense 
mentioned above. If the record is digitized at arbitrary time intervals, however, it is 
necessary to introduce an approximation into the digitization. An analysis of the 
errors introduced at various stages in the preparation of response spectra and the 
results of digitization experiments show that the additional numerical approximations 
are not detrimental. 

The numerical techniques for calculating response spectra have been codified into 
computer programs in Fortran IV; listings of these programs and details not included 
herein are available in a recent report (Nigam and Jennings, 1968). 

FORMULATION OF THE ]-\/[ETHOD 

Spectra are defined by the maximum response of a simple oscillator subjected to 
base acceleration a(t) as shown in Figure 1. The equation of motion of the oscillator is 

2 -t- 2fl~2 + o~x = - -a ( t )  (1) 

in which fl = the fraction of critical damping and ~o = the natural frequency of 
vibrations of the oscillator. 

Assuming that a(t)  may be approximated by a segmentally linear function as 
shown in Figure 2, equation (1) may be written as 

Aa~ (t  - -  t~) ; t~ _-< t ~ ti+l (2) 

with 

Atl = ti+l -- tl 

Aa~ = a ~ + l - -  a.  ( 3 )  
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The solution of equation (2), for t~ < t < t~+~ is given by 

X = e-f lw(t- t i )[C' l  s in  50 ~ / 1 - ~  (t  - -  t l)  -~ C2 cos 50 ~ , / ~  ( t  - -  t,/)] 

as 2,3 Aal  1 Aa~ ( t  - -  t~) 
w 2 -~- w 3 At i  w 2 Ati  
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FIG. 1. A simple oscillator. 
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FIG. 2. Idealized base acceleration. 

in which C1 and C~ are constants of integration. Setting x = x~ a n d  2 = 2¢ a t  t = t~ 

and solving for C1 and C2, it is found that 

1 ( 2/~2-- 1Aal /3 / (5a) 

2/3 Aa~ _f a~ (5b) 
C2 = x~ ~3 Atl ~ "  

Substitution of these values of C1 and C2 into equation (4) will show that x and 2 
at t = t~+l are given by 

XI+I = A ( ~ ,  50, A t l ) x l  "~- B ( ~ ,  50, A~i) d i (6a)  
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in which 

21 ai+~ 

A __|-a2 l f .  all a12 B = I bll b12] . 

a.~,._ 1 [.b21 b22.J 

The elements of matrices A and B are given by 

all = . V / ~  sin co %/1 -- #2 Atl  "Jr- COS co %/1 -- ,~ Ati 

e-#a,A t i 
at, - sin co %/1 - #2 Z~h 

co %/1 - ,2 

a,1 = - -  % / ~  e - # ~  sin co %/1 - ,2 At,: 

/ 
e-~,oA t i | %/1 ,' At,: a22 = \ e ° s  co -- %/1 -- ,2 

b:: = e-'~""" Lkf(2" -- ico,At,: + ~)sin.co %/1%'/~ ---- ,2 '-? Ati 

# __ sin co %/1 - ,2 At,:) 

( 2 , 1 )  ] 2# 
+ ~ + ~ cos co %/i - # ~t,: co'~t~ 

b12 = --e-#~V(2"--~l.) sh:co%/1-'2At* 2fl ] 
L\ co,At~ ~-~i .~ + ~ cos co %/i - ,. zxt~ 

1 2# 
--co~ -I- co3Ah 

L \  co2~t~ + eos~o - z~ti % / 1 - . ~  

(" 5) _ ~ q_ (co V/1 _ #2 sin co %./[ -- ,2 Ati q- ,co cos co %./1 -- , '  At,:) 

1 + L  
co2At,: 

~,22 = - ~ - ~ ' ~  ro212._ -_ 
L ~,~t,: 

1 (cos  co %/1 - #2 At,: 
X 

sin co %/1 - f12 At,:} 
%/1 - #2 / 

7 
_ 2 #  (co %/1 -- ,~ sin co %/1 -- #2 Ah q- ,w cos co %/1 -- #2 A h ) |  

co3Ah / 

i 
- -  ~2Ati" 

(6b) 

(6c) 

(6d) 

(6e) 
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From equation (2), it follows that the absolute acceleration, he, of the mass at time 
t~ is given by 

2 
2i = 2i zr ai = --(2flo~2i -~- o~xi) .  (7) 

Hence, if the displacement and velocity of the oscillator are known at some time 
to, the state of the oscillator at all subsequent times t~ can be computed exactly 
by a step-by-step application of equations (6) and (7). The computational ad- 
vantage of this approach lies in the fact that A and B depend only on 5, ~ and Ate. 
fl and co are constant during the calculation of each spectrum value, and if At~ is 
constant also, x~, 2~ and ~ can be evaluated by the execution of only ten multi- 
plication operations for each step of integration. Matrices A and B, defined by the 
rather complicated expressions equations (6d) and (6e) need to be evaluated only at 
the beginning of each spectrum calculation. 

If varying time intervals are used, it is necessary, in general, to compute A and B 
at  each step of integration. However, by rounding the time coordinates of the record, 
as discussed below, the number of these matrices needed during the calculation 
can be reduced to only a few. These, too can be computed at the beginning of the 
calculation and called upon when needed, thereby saving computing time. 

COMPUTATION OF SPECTRA 

To construct the response spectra, it is necessary to find the maximum values of 
the displacement, velocity and acceleration during a given excitation. This is done 
by computing the response at discrete time intervals through equations (6) and (7) and 
monitoring the response parameters to retain the maximum values. Thus, the 
response spectra are given by 

S~(~,  5) = M a x  ~(~, #)] (8a)  
i=I,N 

&(~, ~) = M a x  [2~(~,  #)] (8b) 
I=I,N 

&(~, ~) = M a x  [~(~, #)] ( s o )  
~=I,N 

in which S~, S, and S~ are the spectral values of displacement, velocity, and accelera- 
tion respectively, for selected values of damping and natural frequency; and N is the 
total number of discrete points at which the response is obtained. 

This process of obtaining the maximum response is approximate because the re- 
sponse is found only at discrete points, whereas the true maxima may occur between 
such points. This error, called the error of discretization, is inherent in all numerical 
procedures, but can be bounded within acceptable limits by a suitable choice of the 
time interval. The discretization error operates to give spectrum values lower than 
the true values and the error will be a maximum if the maximum response occurs 
exactly midway between two discrete points as shown in Figure 3. An estimate for 
the upper bound of this error can be found by noting that at the time of maximum 
displacement or velocity, the response of the oscillator is nearly sinusoidal at a fre- 
quency near its natural frequency. Under this assumption the error can be related to 
the maximum interval of integration (Ar),~ and the period of the oscillator as illus- 
trated in Figure 3. 
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Digitization of Earthquake Records. When earthquake records are digitized at equal 
time intervals, the acceleration values are measured at regular time steps and are 
assumed to be connected by straight line segments. If the interval of digitization, At, 
is sufficiently small, this procedure approximates the actual earthquake record quite 
closely. The choice of the interval of digitization depends upon the period range of 
interest and the nature of the earthquake record; commonly used values range from 
0.01 to 0.04 seconds. Analytical methods for assessing the error induced by such a 
sampling process are available (Schiff and Bogdanoff, 1967, Bendat and Piersol, 1966). 
Digitization at equal time intervals will be a virtual necessity for efficient processing 
of accelerograms recorded on magnetic tape, and in other instances where analog to 
digital conversion is made automatically. 

For records digitized at unequal time intervals the abscissae and ordinates of the 
points where changes of slope are judged to occur are measured and the points are 
again assumed to be connected by straight line segments (Figure 2). This procedure 
leads to variable time intervals between successive points. The accuracy of this ap- 

(AT) m M a x i m u m  E r r o r  
( p e r  c e n t )  - o 

X 
--< T/10 --< 4 . 9  

T/Z0 ~ I ° Z 

--< T/40 ! 0° 3 

j I 

3- 

FIG. 3. E r r o r  due  to d i s e r e t i z a t i o n .  

proach is difficult to determine analytically, but should be considerably greater than 
would be achieved by the same number of sample points at equal intervals. This 
method is the most convenient for manually controlled digitization techniques. 

Spectra Computation for Equal Time Intervals. Equations (6) show that matrices 
A and B are functions of ~0, ¢~ and At+. If At~ is constant, that is, the earthquake record 
is digitized at equal time intervals, these matrices need to be computed only once for 
each pair of co and ~ and the chosen value of At, the interval of integration. Also, since 
the method does not involve truncation error, it is possible to use larger intervals of 
integration than in other methods. The choice of the interval of integration, At, is 
controlled by the interval of digitization (At =< At) and the error of diseretization. 
Figure 3 shows that the error due to discretization is less than 1.2 per cent 
if Ar ~ T/20 (T = Natural Period). Considering other errors in the computation of 
spectra, this choice of interval of integration seems reasonable. In fact, AT =< T/IO 
may be satisfactory for most purposes. 

Since the third order Runge-Kutta scheme of integration often has been used for the 
digital computation of spectra, the proposed method is compared to it with regard to 
accuracy and computing time. To make the comparison, undamped velocity spectrum 
values were obtained for artificial earthquake No. 7 (Jennings, 1963) using a third 
order Runge-Kutta scheme, for four values of the interval of integration: Ar =< T/IO, 
T/20, T/40, and T/80. The spectrum values also were obtained by the present method 
for Ar _--< T/10 and T/20. The results of these computations are compiled in Table 1, 
which shows the spectral values and the relative values of the computation time for 
different cases. 
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The data in Table  1 show tha t  it is necessary to use Ar < T/80 to get accuracy to 
three significant figures using the third order Runge-Kut ta  scheme of integration. 
For the exact scheme of integration, however, Ar =< T/IO may be acceptable for most 
practical purposes. I t  is seen also from the last two columns of Table 1 tha t  in some 
cases the spectral values are the same for mr _-< T/IO and Ar -<_ T/20. This occurs 
when the max imum value has a t ime coordinate which is a common multiple of both 
step lengths. 

The relative t imes given in Table 1 indicate tha t  for accuracy to three significant 
figures the proposed method with AT --< T/20 is about  3 to 4 times as fast as the third 

TABLE 1 
~.TNDAMPED VELOCITY SPECTRA AND COMPUTING Wi~IES FOR P~ECORDS DIGITIZED 

AT EQUAL TIME ~NTERVALS 

(Artificial Earthquake No. 7, At = 0.025 sees) 

Sv In Ins/Sec 

Period In Secs third order Runge-Kutca exact 

AT ~ T/IO Ar ~ T/20 Ar ~ T/40 AT ~ T/80 Ar ~ T/tO AT ~ T/20 

0.05 0.126427 0.151835 0.167647 0.204386 0.213610 
0.1 1.175386 1.700338 1.938206 2.000499 2.021378 
0.2 5.892718 6.974802 7.951382 8.077665 8.129632 

0.3 8.149913 8.262451 7.951037 7.951037 7.927181 7.99255a 
0.4 16 .399755 21.987390 22.985190 23.097921 23.174661 23.174610 

0.5 20 .716002 20.716002 22.897381 23.164824 23.352803 23.352803 
0.7 25 .625738 25.625738 26.732634 26.861891 26.966020 26.966020 
0.9 14.911507 14.911507 15.019002 15.024426 15.059319 15.059319 

1.0 13 .712175 13.712175 13.712175 13.809191 13.841665 13.841665 
1.6 23 .740771 23.740771 23.740771 23.757607 23.772265 23.772265 
2.0 13 .137178 13.137178 13.137178 13.137178 13.148899 13.148899 

0.213611 
2.021378 
8.142673 

Relative com- 
putation 
time 

1.5 2 3 4 .75 1 

Note: Spectral values below dotted lines were obtained at Ar = 0.025 sees, the interval of 
digitization. 

order Runge-Kut ta  technique. Using the I B M  7094 Computer  at  the California 
Ins t i tu te  of Technology Computing Center, the computing t ime for the proposed 
method with Ar -< T/20 averages about  1.0 see execution t ime per spectrum point for 
the 30 see record used to compile Table 1. 

Spectra Computation for Unequal Time Intervals. I f  the earthquake record is digitized 
at  unequal t ime intervals, matrices A (¢o, ¢~, Ate) and B(co, ~, Atg) in equations (6) 
will, in general, change from step to step, making it necessary to compute them anew 
at  each step of integration. From equations (Cd) and (Ce), which define the elements 
of these matrices, i t  is clear tha t  this computat ion would take a large amount  of time; 
in fact, it would make the method slower than a comparable third order Runge-Kut ta  
scheme. However, the inherent limitations of the digitized earthquake record make it 
possible to develop an approximate method of satisfactory accuracy which gives a 
saving in computing time. The essential feature of this method is a rounding of the 
t ime coordinates of the original record to a predetermined accuracy. Then, choosing an 
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appropriate maximum interval of integration, (At)m, and subdividing each time 
interval of the rounded time record into time intervals equal to or less than (At)~,  
the calculation proeeeds much as before, except that A(~o, 8, Ar~.) and B(¢o, f~, Ar~') 
must be calculated for four or five different values of Arj. This procedure is illustrated 
in Table 2. 

After the time record is rounded and subdivided, the values of the ground aeeelera- 
tion at the additional points created by subdivision are computed by linear interpola- 
tion from the original record. The modified record now consists of a set of points along 
the time axis, spaced at a limited number of known intervals, and the corresponding 
values of the acceleration. The operations necessary to produee the modified record 
can easily be programmed for computer execution. 

The number and size of the time intervals in the modified record depend on the way 

TABLE 2 
ROUND-OFF AND SUBDIVISION OF TIME RECORD 

[(~)~ = 0.04 secs] 

Subdivision into Intervals 
Step Original Time Rounded Time of Integration Remarks 

(Ar)m = 0.04 

t~ 10.4267 10.43 0.04 Round-off to . 01 
ti+l 10. 5213 10.52 0.04 
At~ 0.0946 0.09 0.01 

II 

0.09 
(a) (b) 

t~ 10. 4267 10. 425 0.04 0.04 
ti+, 10. 5213 10. 520 0.04 0.04 
Atl 0.0946 0.095 0.01 0.015 

0. 005 0. 095 

0.095 0.095 

Round-off to .005 

in which rounding of the time coordinates is carried out and the choice of ( k r ) ~ .  For 
the example presented in Table 2, the possibilities are: 

I Arj = 0.04, 0.03, 0.02 and 0.01 (4 time-intervals) 
IIa Arj = 0.04, 0.03, 0.02, 0.01 and 0.005 (5 time-intervals) 
IIb Arj = 0.04, 0.035, 0.03, 0.025, 0.02, 0.015, 0.01, 0.005 (8 time-intervals). 

Therefore, if the original record is modified as indicated above, the exact method needs 
only a limited number of matrices for each pair of o~ and fl, and these can be computed 
before the integration is started. By indexing each possible Arj and the corresponding 
matrices, the appropriate matrices can be cMled at each step of integration. 

The procedure outlined above requires that the time coordinates of the record be 
rounded to a predetermined decimal fraction. Assuming that the original digital 
description of the earthquake record is exact, this is an approximatioI/which must 
lead to random errors in the computation of spectra. However, a digital description of 
an earthquake at unequal time intervals is obtained by manual, or manually con- 
trolled, reading of a graphical record and is subject to certain unavoidable errors. If  
the round-off is carried out in such a way that effects of the approximation so introduced 
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are well within the errors inherent in the process of digitization, the process outlined 
above will be acceptable. 

Digitization Experiment. Berg (1963) and Brady (1966) have studied the errors 
introduced during the process of digitization and their effect on the computation of 
spectra. In  the absence of gross personal errors or bias, the errors arise primarily from 
resolution of the scaling device and from the thickness of the trace which makes the 
choice of points at which a change of slope occurs somewhat arbitrary. To examine 
these errors an experiment on digitization was conducted by three persons (X, Y, Z) 
on  the Benson-Lehner Data  Reducer 099, at  the California Insti tute of Technology. 
The  first 5 seconds on the Taft,  California N21E record were digitized independently 
by X (5 times), Y (2 times) and Z (2 times), at the highest resolution of the Data  
Reducer for the record used (0.0015 secs and 0.0001 g). In each case points were taken 
when a change in slope was judged to occur in the record. Taking one record of each 
person as a standard, corresponding time coordinates on the other records were sub- 
tracted from it to obtain what  is called here the self-error of digitization. The mean and 

TABLE 3 

SELF-ERRoR OF DIGITIZ~4~TION IN TIME COORDINA.TES 

Error in Time X Y Z 
Coordinates 1 2 3 4 average 

Mean (see) -0.00101 0 . 0 0 0 1  -0.00021 0.00061 -0.00041 0.00013 0.00045 
St andard 0.00432 0 .00503  0 .00412  0 .00426  0 .00443  0.00398 0.00556 

Devia- 
tion (sec) 

s tandard deviation for each case are shown in Table 3. The standard deviations shown 
in Table 3 indicate tha t  a careful reader will be consistent within 0.004 sec about 70 
per cent of the time, with a mean error very close to zero. 

To compare the digitized records obtained by different persons, one of the records of 
X was taken as an overall standard and the records of Y and Z were subtracted from 
i t  to obtain what  is called the cross-error of digitization. The mean and standard 
deviation of the error are shown in Table 4. The standard deviations from the mean 
shown in Tables 3 and 4 indicate tha t  the cross error is about four times the self error, 
thus showing the effect of personal preferences in reading. The consistent, negative 
means indicate a constant shift in the time axis of the record chosen as a standard as 
compared to the other records. Such a shift does not effect the deviation about the 
mean. 

A comparable measure of the error introduced by rounding-off the time record can 
be obtained by subtracting the rounded record from the original record and computing 
the  mean and standard deviation. These were done for one of the records digitized by 
X,  and the results are shown in Table 5, for rounding to 0.01 and 0.005 sec. 

The results of the experiment described in Table 5 show that  the error introduced by 
rounding-off the time coordinates of an earthquake record to 0.01 or 0.005 secs is well 
within the error inherent in the process of digitization. For round-off to 0.01 secs, the 
standard deviation of the error due to round-off is about half of the standard deviation 
of the self-error of digitization and about one sixth of the standard deviation of the 
cross-error. For round-off to 0.005 secs, this margin is further increased by a factor of 2. 
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From this it is concluded that  a round-off to 0.01 or 0.005 sees is an acceptable ap- 
proximation. 

Effect of Rounding Upon Accuracy. Berg (1963) has examined errors in spectra 
caused by random errors in time and acceleration coordinates and has concluded from 
an approximate analysis and from computer experimentation that  a scatter of the  
order of 20 per cent in undamped spectra is to be expected from identical computing 
procedures applied to independently prepared digitizations of the same accelerogram. 
He attr ibuted the scatter to random errors in reading the accelerogram. Using Berg's 
approximate formulae for expected error in velocity spectra due to random errors irt 

TABLE 4 

CROSS-~RI~OR OF DIGITIZATION IN T I M E  COORDINATES 

Error in Time Y Z 
Coordinates 1 2 average 1 2 average 

Mean (see) -0.02525 -0.02538 -0.02532 -0.02212 -0.02257 -0.02235 
Standard De- 0 . 0 1 8 1 9  0 . 0 1 7 9 4  0 . 0 1 8 0 6  0 . 0 1 5 2 0  0 . 0 1 5 2 0  0.01520 

viation (see) 

TABLE 5 

ERROR D U E  TO I~OUND-OFF IN T I M E  COORDINATES 

Error in Time Coordinates Roound-off to 0.01 sees Round-off to 0.005 sees 

Mean (see) 0.00003 0.00004 
Standard Deviation (see) 0.00285 0.00149 
Maximum Error 4-0.005 4-0.0025 

the time coordinates of the record, and assuming a = 0.045g, (S~) ave ~ 20 sin/see 
and At = 0.05 sees, the following results are found: 

Round-off to 0.01 sees 
(a ~ 0.003 sees) 

Round-off to 0.005 sees 
(~ ~ 0.0015 sees) 

Expected Error in S, 

0.12~JD 

Expected Percentage 
Error  in S~ (D = 

30 sees) 

3.3 

0.06v/D 1.6 

Here, a = the r.m.s, value of the ground acceleration, ¢ = standard deviation of 
the expected error in the time coordinates and D = the duration of the earthquake. 
The results indicate tha t  the errors in spectral values due to round-off to 0.01 or 0.005 
sees are much less than the 17 per cent error Berg (1963) found likely to occur as a 
result of random errors in reading the t ime coordinates during digitization. 

The validity of the above analysis can be checked by comparing the spectra for 
unrounded and rounded time records. This was done for the N 65°E component of the 
station 2 record of the Parkfield earthquake of June 27, 1966 and the N 8°E component 
of the Lima, Peru earthquake of October 17, 1966. The undamped velocity spectra for 
the original (unrounded) record and for the records obtained after round-off the time 
coordinates to 0.01 sees and to 0.005 sees are shown in Figures zi and 5. For the Park- 
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field earthquake, the three curves are almost indistinguishable. For the Lima, Peru 
earthquake the average percentage errors are of the order expected on the basis of 
Ber t ' s  approximate analysis. 
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FIG. 4. Effect of rounding the time coordinates on velocity spectra. 
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The computing time for spectra based on digitized accelerograms rounded to 0.005 
~ecs was found to be only' 10 to 15 per cent more than the computing time for records 
rounded to 0.01 secs. Considering the expected error in the spectral values in the two 
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cases, it is concluded tha t  to be consistent with the choice of (At)  ~ ( < T /20) ,  round- 
off to 0.005 secs would be adopted as standard. Here again it may  be pointed out tha t  
the use of (AT)~ ==_ T/10 and round-off to 0.01 secs should prove acceptable for most  
purposes. 

Intervals of Integration. The procedure for computing spectra outlined above re- 
quires the choice of a maximum interval of integration, ( A r ) ~ .  Since truncation 
error is not involved, the choice is governed by  the error introduced by  discretization, 
and by  computing time. As shown in Figure 3, if (hr)m < T/20, the error due to 

TABLE 6 
"UNDAMPED VELOCITY SPECTRA AND RELATIVE COMPUTING TIMES FOR I~ECORDS DIGITIZED AT 

UNEQUAL TIME INTERVALS 

(N 65°E Component the Station 2 Accelerogram of the Parkfield Earthquake, June 27, 1966, 
(Z~r)~ = 0.05 sees) 

S~ In Ins/Sec 

Period In Secs Third Order Runge-Kutta exact 

Ar ~ T/IO A'r <= T/20 rA < T/40 Ar =< /'/80 Ar =< T/IO Ar -< T/20 

0.05 0.404177 0.547537 0.690496 0.781693 0.776551 
0.1 1.864953 2.749153 3.177131 3.391490 3.446407 
0.2 8.662501 10.587279 10.905353 10.929761 11.007311 
0.3 14 .519660 20.197662 20.780575 20.880682 20.724359 
0.4 39 .198212 40.554802 40.660100 40.677461 40.844893 

0.5 46 .064539 50.050687 51.059478 51.129117 51.329105 
0.7 85 .185941 86.373600 89.262830 89.655182 90.064254 
0.9 57 .705933 59.043586 60.146103 60.228546 60.508116 

1.0 44 .625701 44.625701 44.980583 44.990469 45.149522 
1.6 63 .948129 63.948129 63.960555 63.941084 64.027008 

2.0 64.084503 64.084503 64.084503 64.134411 64.167577 

0.802090 
3.446375 

11.007311 
20.954274 
40.844893 

51.329105 
90.063806 
60.488801 

45.149522 
64.027008 

64.167577 

Relative com- 
putation 
time 

1.25 1.5 2.25 3.5 0.75 1 

Note: Spectrum values below dotted lines were calculated for (Ar)m = 0.05 secs. 

discretization is less than  1.2 per cent. This may  be treated as one constraint on the 
choice of ( A r ) ~ .  

The  effect of (At) ~ on the computing t ime is more complex in tha t  a larger value of 
(At) ~ tends to reduce the number  of integration steps but  increases the number  of 
matrices to be calculated. Smaller values of (Ar )~  imply the reverse results, so a 
choice of (A t )~  should s t r ~ e  a balance between the two effects. The ideal choice 
would depend on the nature of the accelerogram used, but  a compromise satisfactory 
for most  uses was achieved by  the choice of (A t )~  = 0.05 for spectrum periods equal 
or exceeding one second and (AT)~ =< T/20 for periods less than  one second. 

I f  the time-coordinates of the record are rounded to 0.005 secs, there is more than  
one way in which the intervals of digitization can be subdivided, as illustrated in 
Table 2. The choice of subdividing method is governed by  the computing time, and to  
examine this question a few trials were conducted using both the methods in Table 2. 
I t  was found tha t  in most cases, subdivision method I I a  (Ars -- 0.04, 0.03, 0.02, 0.01 
and 0.005) required less computing time. 
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Comparison to a Third Order Runge-Kutta Method. To indicate the effect of trunca- 
tion error on spectrum values obtained by a Runge-Kutta method and to compare the 
accuracy and computing time for that method with the techniques developed above, 
undamped velocity spectra were computed by both methods. The results of these 
computations are compiled in Table 6. 

The results in Table 6 show again that the accuracy of the proposed method is only 
achieved by the Runge-Kutta method with Ar =< T/80, and that there is a three-to- 
four-fold savings in time by the use of the proposed technique. 

Computer Programs. Computer programs, in Fortran IV, for the computation of 
spectra using the method of computation presented in this paper are included in a 
recent report (Nigam and Jennings, 1968). Flow charts and instructions for the use of 
the programs are given also. 

CONCLUSIONS 

This paper presents a numerical method for the calculation of response spectra from 
strong-motion earthquake accelerograms. The method is based on the exact solution 
of the differential equation governing the response of a simple oscillator to segmentally 
linear excitation. To adapt the exact solution to efficient computing, the solution is 
written in the form of two 2 X 2 matrices which operate upon the conditions at the 
beginning of the integration step and upon the acceleration at the beginning and end of 
the integration step to produce the exact velocity and displacement at the end of the 
time interval. Because the matrices are functions only of the damping and period of 
the oscillator used to calculate spectra and of the magnitude of the time interval, only 
a limited number of the matrices need be evaluated. The method can be applied di- 
rectly to accelerograms digitized at equal time intervals, and by suitably rounding the 
time coordinates, to records digitized at unequal time intervals. The errors introduced 
by rounding the time coordinates are much less than other errors inherent in the 
digitization of earthquake records. 

The choice of using equal or unequal time intervals for digitization of accelerograms 
usually is not based on computational ease, but on the type of equipment available for 
the work. However, the choice of digitization method affects the calculation technique 
and the computing time. For the same number of sample points, digitization at unequal 
time intervals represents the original record better than does digitization at equal 
intervals, and if digitization is done at equal intervals a small time step usually must 
be used to avoid significant distortion of the record. Because for the usual integration 
methods the interval of integration must be less than or equal to the interval of digiti- 
zation, a small digitization interval makes it necessary to use a small integration step 
where otherwise a larger interval could be used. This leads to an increase in computing 
time and is of particular significance to the method presented herein, because this 
technique does not involve truncation error and therefore can be used accurately with 
time intervals as large as T/IO to T/20. Thus, an accelerogram digitized at unequal 
intervals, with its smaller number of coordinates, can be processed more rapidly by the 
proposed method than can the same record digitized at equal time intervals. 

For the accelerograms used as examples in this study, the proposed method showed 
a three-to four-fold saving in time over a third order Runge-Kutta method of com- 
parable accuracy. This was found to be the case for records digitized at both equal and 
unequal time intervals. For accelerograms with durations of 30 seconds, spectra for 30 
periods and 4 values of damping were calculated and plotted by an IBM 7094 com- 
puting system with an average computing time of 120 seconds, of which 100 seconds 
were used for execution of the calculations. If spectra for several earthquakes were to 
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be computed in the same operation, a further savings in computing time could be 
achieved by storing the matrices used in the integration method rather than recom- 
puting them at the beginning of the processing of each accelerogram. 

Because of the increasing interest in the response of yielding structures to earthquake 
motions, it is appropriate to point out that the method presented herein can be adapted 
also to the calculation of spectra for bilinear hysteretic and elasto-plastic oscillators. To 
apply the method it would be necessary to compute two sets of matrices corresponding 
to the two stiffness coefficients of the structure. 
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